Simultaneous monitoring of humidity and chemical changes using quartz crystal microbalance sensors modified with nano-thin films.

Anal Sci

Department of Chemical Processes and Environments, Graduate School of Environmental Engineering, The University of Kitakyushu, Wakamatsu, Kitakyushu, Japan.

Published: July 2011

Quartz crystal microbalance (QCM) electrodes modified with nano-thin films were used to develop a system for measuring significant environment changes (smoke, humidity, hazardous material release). A layer-by-layer approach was used for the deposition of sensitive coatings with a nanometer thickness on the electrode surface. The QCM electrode was modified with self-assembled alternate layers of tetrakis-(4-sulfophenyl) porphine (TSPP) (or its manganese derivative, MnTSPP) and poly(diallyldimethylammonium chloride) (PDDA). The QCM sensors, which had been reported previously for humidity sensing purposes, revealing a high possibility to recognize significant environmental changes. Identifying of the origin of environmental change is possible via differential signal analysis of the obtained data. The sensors showed different responses to humidity changes, hazardous gas (ammonia) or cigarette smoke exposure. Even qualitative analysis is not yet available; it has been shown that ventilation triggers or alarms for monitoring smoke or hazardous material release can be built using the obtained result.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.27.253DOI Listing

Publication Analysis

Top Keywords

quartz crystal
8
crystal microbalance
8
modified nano-thin
8
nano-thin films
8
hazardous material
8
material release
8
simultaneous monitoring
4
humidity
4
monitoring humidity
4
humidity chemical
4

Similar Publications

A Study on the Development of Real-Time Chamber Contamination Diagnosis Sensors.

Sensors (Basel)

December 2024

Department of Energy & Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea.

Plasma processes are critical for achieving precise device fabrication in semiconductor manufacturing. However, polymer accumulation during processes like plasma etching can cause chamber contamination, adversely affecting plasma characteristics and process stability. This study focused on developing a real-time sensor system for diagnosing chamber contamination by quantitatively monitoring polymer accumulation.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

Collaborative integration of SERS and QCM sensing for label-free multi-component gas detection.

Talanta

January 2025

Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:

The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.

View Article and Find Full Text PDF

Elucidating the charging mechanism plays an intrinsic and critical role in the development of high-performance supercapacitors; however, a deep understanding of how this mechanism varies under different charging rates remains challenging. In this study, we investigate the charging mechanism of conductive metal-organic framework (c-MOF) electrodes in ionic liquids, combining electrochemical quartz crystal microbalance and constant-potential molecular dynamics simulations. Both experimental and modeling results reveal a transition of the ion adsorption and desorption modes from anion dominance at low charging rates to ion-exchange governance at high charging rates, significantly reducing the contribution of anions to the capacitance.

View Article and Find Full Text PDF

The rising demand for energy storage calls for technological advancements to address the growing needs. In this context, sodium-ion (Na-ion) batteries have emerged as a potential complementary technology to lithium-ion batteries (Li-ion). Among other materials, NaV(PO)F (NVPF) is a promising cathode for Na-ion batteries due to its high operating voltage and good energy density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!