This review provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights by physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees solved the etiologic riddle of HCM and unexpectedly demonstrated mutations in sarcomere protein genes as the cause of disease. In addition to celebrating 20 years of genetic research in HCM, this article serves as an introductory overview to a thematic review series that will present contemporary advances in the field of hypertrophic heart disease. Through the continued application of advances in genetic methodologies, combined with biochemical and biophysical analyses of the consequences of human mutations, fundamental knowledge about HCM and sarcomere biology has emerged. Expanding research to elucidate the mechanisms by which subtle genetic variation in contractile proteins remodel the human heart remains an exciting opportunity, one with considerable promise to provide new strategies to limit or even prevent HCM pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072749 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.110.223834 | DOI Listing |
JACC Adv
January 2025
Hypertrophic Cardiomyopathy Center, Division of Cardiovascular Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
Background: The effect of pregnancy on individuals with hypertrophic cardiomyopathy (HCM) is not well investigated.
Objectives: The purpose of this study was to assess the impact of pregnancy on all-cause mortality and clinical outcomes among individuals with HCM.
Methods: Using the TriNetX research network, we identified individuals within reproductive age (≥18-45 years) with a diagnosis of HCM between 2012 and 2022 (n = 10,936).
Cardiovasc Drugs Ther
January 2025
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).
Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.
Zhonghua Xin Xue Guan Bing Za Zhi
January 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China.
Int J Surg
December 2024
Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
Background: Description of the learning curve for transapical beating heart septal myectomy (TA-BSM) helps to understand the potential for wider adaptability. The authors elaborate and examine a competency-based training assessment for TA-BSM that could serve to disseminate septal myectomy expertise.
Materials And Methods: Data on 177 consecutive patients who underwent the TA-BSM for hypertrophic obstructive cardiomyopathy (HOCM) between April 2022 and June 2023 was collected prospectively, which was registered on ClinicalTrials.
BMJ Open
December 2024
Institute for Cardio-Metabolic Medicine, University Hospital Coventry & Warwickshire NHS Trust, University of Warwick Medical School and Coventry University, Coventry, UK
Objective: To estimate the resource use of patients with obstructive hypertrophic cardiomyopathy (HCM), stratified by New York Heart Association (NYHA) class, in the English and Northern Irish healthcare systems via expert elicitation.
Design: Modified Delphi framework methodology.
Setting: UK HCM secondary care centres (n=24).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!