Tolerance to high-intensity constant-power (P) exercise is well described by a hyperbola with two parameters: a curvature constant (W') and power asymptote termed "critical power" (CP). Since the ability to sustain exercise is closely related to the ability to meet the ATP demand in a steady state, we reasoned that pulmonary O(2) uptake (Vo(2)) kinetics would relate to the P-tolerable duration (t(lim)) parameters. We hypothesized that 1) the fundamental time constant (τVo(2)) would relate inversely to CP; and 2) the slow-component magnitude (ΔVo(2sc)) would relate directly to W'. Fourteen healthy men performed cycle ergometry protocols to the limit of tolerance: 1) an incremental ramp test; 2) a series of constant-P tests to determine Vo(2max), CP, and W'; and 3) repeated constant-P tests (WR(6)) normalized to a 6 min t(lim) for τVo(2) and ΔVo(2sc) estimation. The WR(6) t(lim) averaged 365 ± 16 s, and Vo(2max) (4.18 ± 0.49 l/min) was achieved in every case. CP (range: 171-294 W) was inversely correlated with τVo(2) (18-38 s; R(2) = 0.90), and W' (12.8-29.9 kJ) was directly correlated with ΔVo(2sc) (0.42-0.96 l/min; R(2) = 0.76). These findings support the notions that 1) rapid Vo(2) adaptation at exercise onset allows a steady state to be achieved at higher work rates compared with when Vo(2) kinetics are slower; and 2) exercise exceeding this limit initiates a "fatigue cascade" linking W' to a progressive increase in the O(2) cost of power production (Vo(2sc)), which, if continued, results in attainment of Vo(2max) and exercise intolerance. Collectively, these data implicate Vo(2) kinetics as a key determinant of high-intensity exercise tolerance in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.01092.2010 | DOI Listing |
Natl Sci Rev
January 2025
State Key Laboratory of Advanced Chemical Power Sources, Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||VO·nHO cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes.
View Article and Find Full Text PDFEcho Res Pract
January 2025
School of Human Kinetics, Trinity Western University, CANIL Building, Rm. 115 22500 University Drive, Langley, BC, V2Y 1Y1, Canada.
Background: Aerobic capacity measured by maximal oxygen uptake (VOmax) is related to functional capacity and is a strong independent predictor of all-cause and disease-specific mortality. Sex-specific cardiac and vascular responses to endurance training have been observed, however, their relative contributions to VOmax are less understood. The purpose of this study was to evaluate sex-specific ventricular-vascular interactions associated with VOmax in healthy males and females.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:
Vanadium dioxide (VO) has attracted significant attention in aqueous zinc ion batteries (AZIBs) owing to their desirable theoretical specific capacity originated from multiple electrons transfer reaction and special crystal structure. However, sluggish electrochemical kinetics leads to inferior electrochemical storage performance. Herein, rich vanadium vacancies were introduced in tunnel VO to boost Zn diffusion, increasing charge storage capacity and lengthen lifespan.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China. Electronic address:
Transition metal oxides (TMOs) can accelerate the sluggish kinetics of vanadium redox reaction, but face challenges like limited active sites and difficulties in nanometerization, highlighting the urgent need for new TMO electrocatalysts for vanadium redox flow battery (VRFB). CoMoO features high electrochemical activity, numerous redox sites, flexible control, and short electron pathways. Herein, a high catalytic and super stable graphite felt electrode modified in situ with network cross-linking CoMoO nanosheets (CoMoO@GF) was prepared via hydrothermal and heat treatment method to enhance VRFB performance.
View Article and Find Full Text PDFMed Sci Sports Exerc
December 2024
Exercise Physiology Lab at Toledo, Faculty of Sport Sciences, University of Castilla-La Mancha, Toledo, SPAIN.
Purpose: We investigated if a bout of HIIE is more efficacious at reducing postprandial hyperglycemia than an isocaloric bout of MICE.
Methods: Nineteen healthy physically active individuals (21% women) completed three trials in a randomized order: i) HIIE cycling consisting of 5 bouts of 4 min at 83 ± 9% of subjects' maximal oxygen consumption (V˙O2 MAX) with active recoveries at 53 ± 8% for a total of 50 min; ii) MICE cycling at 65 ± 8% of V˙O2 MAX for 50 min, and iii) CONTROL no exercise. All trials were followed by a standard oral glucose tolerance test (OGTT) ingesting 74 grams of glucose traced with 1 gram of uniformly labeled [13C]-glucose.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!