A new class of pyrrolo[2,3-d]pyrimidin-4-one corticotropin-releasing factor 1 (CRF(1)) receptor antagonists has been designed and synthesized. In general, reported CRF(1) receptor antagonists possess a sp(2)-nitrogen atom as hydrogen bonding acceptor (HBA) on their core scaffolds. We proposed to use a carbonyl group of pyrrolo[2,3-d]pyrimidin-4-one derivatives as a replacement for the sp(2)-nitrogen atom as HBA in classical CRF(1) receptor antagonists. As a result, several pyrrolo[2,3-d]pyrimidin-4-one derivatives showed CRF(1) receptor binding affinity with IC(50) values in the submicromolar range. Ex vivo (125)I-sauvagine binding studies showed that 2-(dipropylamino)-3,7-dimethyl-5-(2,4,6-trimethylphenyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (16b) (30 mg/kg, p.o.) was able to penetrate into the brain and inhibit radioligand binding to CRF(1) receptors (frontal cortex, olfactory bulb, and pituitary) in mice. We identified pyrrolo[2,3-d]pyrimidin-4-one derivatives as the first CRF(1) antagonists with a carbonyl-based HBA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2011.02.086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!