Hippocampal atrophy is a marker of disease state and progression in Alzheimer's disease. The gold standard to measure hippocampal volume is through manual segmentation. A number of protocols to measure hippocampal volume through manual segmentation have been developed, but the marked heterogeneity of anatomical landmarks has given rise to wide variability of volume estimates. With the aim of fostering the use of hippocampal volume in routine clinical settings, an international task force is currently working on developing a harmonized protocol that will resolve and reduce the present heterogeneity. The task force will then validate the harmonized protocol, develop harmonized probabilistic hippocampal maps, and develop illustrative and educational material on the use of the harmonized protocol and maps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jalz.2010.06.007 | DOI Listing |
J Affect Disord
January 2025
Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China. Electronic address:
Background: Frailty and social contact are significant factors influencing dementia risk. While previous studies have separately examined these factors, their combined impact on dementia remains underexplored.
Methods: This study included 338,567 UK biobank participants from 2006 to 2010, with follow-up until December 2022.
Georgian Med News
November 2024
Lab. Neurobiology of Sleep-Wakefulness Cycle, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.
Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.
Animal Model Exp Med
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
Background: Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK.
Background/objectives: Sustaining the human brain's hippocampus from atrophy throughout ageing is critical. Exercise is proven to be effective in promoting adaptive hippocampal plasticity, and the hippocampus has a bidirectional relationship with the physical environment. Therefore, this systematic review explores the effects of walking, a simple physical activity in the environment, on hippocampal formation volume changes for lifelong brain and cognitive health.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Creative Product Design, Asia University, Taichung, Taiwan.
Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period for therapeutic intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!