High temperature NMR study of aluminum metal influence on speciation in molten NaF-AlF3 fluorides.

Inorg Chem

CEMHTI, CNRS UPR 3079, 1D avenue de la recherche scientifique, 45071 Orléans cedex 2, France.

Published: April 2011

In situ high temperature NMR spectroscopy has been used to characterize the interactions between aluminum metal and cryolitic melts. (27)Al, (23)Na, and (19)F NMR spectra have been acquired in NaF-AlF(3) and NaF-AlF(3)-Al melts over a wide range of compositions. The evolution of the signals evidence a chemical reaction between the metal and the salt. The different samples have been also described after solidification at room temperature by Environmental Scanning Electronic Microscopy, high resolution solid state NMR, and X-ray diffraction. The combination of in situ high temperature NMR characterization of the melts, with experimental description of solidified samples after cooling, evidence an enrichment of the melts with AlF(3) and different reactions with metallic aluminum depending on the initial bath composition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic1019845DOI Listing

Publication Analysis

Top Keywords

high temperature
12
temperature nmr
12
aluminum metal
8
situ high
8
nmr
5
high
4
nmr study
4
study aluminum
4
metal influence
4
influence speciation
4

Similar Publications

Benzo (a) pyrene produced by food during high-temperature process enters the body through ingestion, which causes food safety issues to the human body. In order to alleviate the harm of foodborne benzo (a) pyrene to human health, a strain that can degrade benzo (a) pyrene was screened from Kefir, a traditional fermented product in Xinjiang. Bacillus cereus M72-4 is a Gram-positive bacteria sourced from Xinjiang traditional fermented product Kefir, under Benzo(a)pyrene stress conditions, there was 69.

View Article and Find Full Text PDF

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity.

Adv Mater

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution.

View Article and Find Full Text PDF

Nexus: A versatile console for advanced low-field MRI.

Magn Reson Med

January 2025

Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.

Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.

View Article and Find Full Text PDF

The increasing population density and impervious surface area have exacerbated the urban heat island effect, posing significant challenges to urban environments and sustainable development. Urban spatial morphology is crucial in mitigating the urban heat island effect. This study investigated the impact of urban spatial morphology on land surface temperature (LST) at the township scale.

View Article and Find Full Text PDF

Using machine learning to forecast peak health care service demand in real-time during the 2022-23 winter season: A pilot in England, UK.

PLoS One

January 2025

Real-time Syndromic Surveillance Team, Field Services, Health Protection Operations, UK Health Security Agency, Birmingham, United Kingdom.

During winter months, there is increased pressure on health care systems in temperature climates due to seasonal increases in respiratory illnesses. Providing real-time short-term forecasts of the demand for health care services helps managers plan their services. During the Winter of 2022-23 we piloted a new forecasting pipeline, using existing surveillance indicators which are sensitive to increases in respiratory syncytial virus (RSV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!