Polyphenols, chlorophylls, and carotenoids were characterized by HPLC-DAD-MS(n) in the pericarp of unripe to over-ripe 'Hong Huey' and 'Chacapat' litchi fruit at harvest and during subsequent storage (5 °C, 90% RH, 21 days). (-)-Epicatechin and A-type procyanidins always predominated quantitatively. Besides these ortho-diphenolic compounds, minor novel litchi flavonoids included monohydroxylated structures. Chlorophyll degradation by 73-92% and 7-38-fold anthocyanin accumulation affected pericarp color throughout the last 15-20 days of on-tree maturation. Postharvest, anthocyanins and (-)-epicatechin largely degraded within the first 3 days, accompanied by severe pericarp browning. Without packaging of the fruit, desiccation initially accelerated polyphenol oxidase-induced oxidation of (-)-epicatechin, but then hindered its further progress. Constant levels of the monohydroxylated (epi)afzelechin indicated no involvement of peroxidase. Acting as antioxidants, anthocyanins retarded (-)-epicatechin degradation. Hence, pinkish-red fruit with a molar ratio of cyanidin 3-O-rutinoside to (-)-epicatechin of >3:100 retained flavonoids best. However, brown polymers masked remaining red pigments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf104432r | DOI Listing |
Microb Ecol
December 2024
Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany.
Poly(butylene succinate-co-adipate) (PBSA), a biodegradable plastic, is significantly colonized and degraded by soil microbes under natural field conditions, especially by fungal plant pathogens, raising concerns about potential economic losses. This study hypothesizes that the degradation of biodegradable plastics may increase the presence and abundance of plant pathogens by serving as an additional carbon source, ultimately posing a risk to forest ecosystems. We investigated (i) fungal plant pathogens during the exposure of PBSA in European broadleaved and coniferous forests (two forest types), with a specific focus on potential risk to tree health, and (ii) the response of such fungi to environmental factors, including tree species, soil pH, nutrient availability, moisture content, and the physicochemical properties of leaf litter layer.
View Article and Find Full Text PDFJ Nematol
March 2024
Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia.
Sci Total Environ
December 2024
School of Geographical sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, Fujian, China.
Tree plantations worldwide are a large terrestrial carbon sink. Previous studies on the carbon sequestration capacity of plantations mainly focused on tree biomass carbon sequestration, but the importance of soil organic carbon (SOC) was relatively unclear. Living root carbon inputs influence SOC via plant-microbe interactions in the rhizosphere and play an essential role in nutrient cycling.
View Article and Find Full Text PDFMethods Mol Biol
September 2024
DEIB, Politecnico di Milano, Milan, Italy.
Quantitative structure-activity relationships (QSAR) is a method for predicting the physical and biological properties of small molecules; it is in use in industry and public services. However, as any scientific method, it is challenged by more and more requests, especially considering its possible role in assessing the safety of new chemicals. To answer the question whether QSAR, by exploiting available knowledge, can build new knowledge, the chapter reviews QSAR methods in search of a QSAR epistemology.
View Article and Find Full Text PDFHeliyon
September 2024
National Ecological Science Data Center Guangdong Branch, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
With the intensification of global change, forests are subjected to varying degrees of drought or high-temperature stress, which has an indelible impact on the growth of trees. However, knowledge on the response of sap flow to environmental changes in different types of forests is still rare, especially in China's subtropical forest ecosystem. Consequently, studying how different tree species regulate their sap flow in response to shifting environmental conditions is essential for understanding forest transpiration, water use efficiency, and drought stress resilience.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!