It has been reported that diabetic vascular dysfunction is associated with impaired function of large conductance Ca(2+) -activated K(+) (BK(Ca) ) channels. However, it is unclear whether impaired BK(Ca) channel directly participates in regulating diabetic vascular remodeling by altering cell growth in response to hyperglycemia. In the present study, we investigated the specific role of BK(Ca) channel in controlling apoptosis and proliferation under high glucose concentration (25 mM). The cDNA encoding the α+β1 subunit of BK(Ca) channel, hSloα+β1, was transiently transfected into human embryonic kidney 293 (HEK293) cells. Cloned BK(Ca) currents were recorded by both whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry and analysis of fragmented DNA by agarose gel electrophoresis. Cell proliferation was investigated by flow cytometry assays, MTT test, and immunocytochemistry. In addition, the expression of anti-apoptotic protein Bcl-2, intracellular Ca(2+) , and mitochondrial membrane potential (Δψm) were also examined to investigate the possible mechanisms. Our results indicate that inhibition of cloned BK(Ca) channels might be responsible for hyperglycemia-altered apoptosis and proliferation in HEK-hSloα+β1 cells. However, activation of BK(Ca) channel by NS1619 or Tamoxifen significantly induced apoptosis and suppressed proliferation in HEK-hSloα+β1 cells under hyperglycemia condition. When rat cerebral smooth muscle cells were cultured in hyperglycemia, similar findings were observed. Moreover, the possible mechanisms underlying the activation of BK(Ca) channel were associated with decreased expression of Bcl-2, elevation of intracellular Ca(2+) , and a concomitant depolarization of Δψm in HEK-hSloα+β1 cells. In conclusion, cloned BK(Ca) channel directly regulated apoptosis and proliferation of HEK293 cell under hyperglycemia condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.22497 | DOI Listing |
Alzheimers Dement
December 2024
Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona, USA.
Introduction: Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca-activated K channels (BK) regulate cerebrovascular reactivity and are impaired in AD. BK activity depends on intracellular Ca (Ca sparks) and nitro-oxidative post-translational modifications.
View Article and Find Full Text PDFBrain Res
December 2024
Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
Background: Epilepsy affects nearly 50 million people worldwide. Previous studies have indicated the neuroprotective effects of statin on several neuropathological conditions. However, it is very much unknown whether fluvastatin was able to alter the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, and the mechanisms involved in these actions are not completely understood so far.
View Article and Find Full Text PDFPeptides
December 2024
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:
Neuropharmacology
December 2024
Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China.
The affective dimension in postsurgical pain is still poorly understood. Since neuropeptide oxytocin (OXT) has been implicated in a broad spectrum of pain and negative emotion, we investigated the potential therapeutic effect of intranasal OXT on postsurgical pain and associated anxiety in a mice model of plantar incision. The role of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels was explored by using behavioral pharmacology experiments.
View Article and Find Full Text PDFCureus
November 2024
Research and Development, Enalare Therapeutics, Princeton, USA.
Xylazine exacerbates the respiratory depression induced by fentanyl. Because xylazine is a non-opioid, it is resistant to reversal by opioid receptor antagonists such as naloxone (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!