High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BK Ca channel.

J Cell Physiol

Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China.

Published: June 2011

It has been reported that diabetic vascular dysfunction is associated with impaired function of large conductance Ca(2+) -activated K(+) (BK(Ca) ) channels. However, it is unclear whether impaired BK(Ca) channel directly participates in regulating diabetic vascular remodeling by altering cell growth in response to hyperglycemia. In the present study, we investigated the specific role of BK(Ca) channel in controlling apoptosis and proliferation under high glucose concentration (25 mM). The cDNA encoding the α+β1 subunit of BK(Ca) channel, hSloα+β1, was transiently transfected into human embryonic kidney 293 (HEK293) cells. Cloned BK(Ca) currents were recorded by both whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry and analysis of fragmented DNA by agarose gel electrophoresis. Cell proliferation was investigated by flow cytometry assays, MTT test, and immunocytochemistry. In addition, the expression of anti-apoptotic protein Bcl-2, intracellular Ca(2+) , and mitochondrial membrane potential (Δψm) were also examined to investigate the possible mechanisms. Our results indicate that inhibition of cloned BK(Ca) channels might be responsible for hyperglycemia-altered apoptosis and proliferation in HEK-hSloα+β1 cells. However, activation of BK(Ca) channel by NS1619 or Tamoxifen significantly induced apoptosis and suppressed proliferation in HEK-hSloα+β1 cells under hyperglycemia condition. When rat cerebral smooth muscle cells were cultured in hyperglycemia, similar findings were observed. Moreover, the possible mechanisms underlying the activation of BK(Ca) channel were associated with decreased expression of Bcl-2, elevation of intracellular Ca(2+) , and a concomitant depolarization of Δψm in HEK-hSloα+β1 cells. In conclusion, cloned BK(Ca) channel directly regulated apoptosis and proliferation of HEK293 cell under hyperglycemia condition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.22497DOI Listing

Publication Analysis

Top Keywords

bkca channel
24
apoptosis proliferation
16
cloned bkca
12
hek-hsloα+β1 cells
12
bkca
9
high glucose
8
proliferation hek293
8
hek293 cells
8
inhibition cloned
8
diabetic vascular
8

Similar Publications

Introduction: Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca-activated K channels (BK) regulate cerebrovascular reactivity and are impaired in AD. BK activity depends on intracellular Ca (Ca sparks) and nitro-oxidative post-translational modifications.

View Article and Find Full Text PDF

Background: Epilepsy affects nearly 50 million people worldwide. Previous studies have indicated the neuroprotective effects of statin on several neuropathological conditions. However, it is very much unknown whether fluvastatin was able to alter the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, and the mechanisms involved in these actions are not completely understood so far.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetic nephropathy (DN) is linked to renal hemodynamics damage due to dysfunctional endothelial cells and abnormal molecule release, including eNOS and ET-1.
  • Apelin, a molecule that affects endothelial cell function, was found to improve renal blood flow in diabetic mice by enhancing eNOS activity and reducing ET-1 levels.
  • The study suggests that apelin/APJ increases renal perfusion via the PI3K/AKT/GSK-3β/Nrf2 pathway, influencing the expression of BKCa channel subunits without raising intracellular calcium levels in high glucose environments.
View Article and Find Full Text PDF

Intranasal oxytocin alleviates postsurgical pain and comorbid anxiety in mice: Participation of BK(Ca) channels in the hippocampus.

Neuropharmacology

December 2024

Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China.

The affective dimension in postsurgical pain is still poorly understood. Since neuropeptide oxytocin (OXT) has been implicated in a broad spectrum of pain and negative emotion, we investigated the potential therapeutic effect of intranasal OXT on postsurgical pain and associated anxiety in a mice model of plantar incision. The role of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels was explored by using behavioral pharmacology experiments.

View Article and Find Full Text PDF

Xylazine exacerbates the respiratory depression induced by fentanyl. Because xylazine is a non-opioid, it is resistant to reversal by opioid receptor antagonists such as naloxone (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!