Increasing evidence suggest the role of the cannabinoid receptors (CBs) in the control of cell survival or death and signaling pathways involved in tumor progression. Cancer cell lines are characterized by a subtle modulation of CB levels which produces a modified responsiveness to specific ligands, but the molecular mechanisms underlying these events are poorly and partially understood. We previously provided evidence that the endocannabinoid (EC) anandamide (AEA) exerts anti-proliferative effect likely by modulation of the expression of genes involved in the cellular fate. In this study we focused on the role of the CB1 receptor, ECs, and steroids in the mechanisms involved in colorectal cancer (CRC) cell growth inhibition in vitro. We demonstrated that, in DLD1 and SW620 cells, 17β-estradiol induced a specific and strong up-regulation of the CB1 receptor by triggering activation of the CB1 promoting region, localized at the exon 1 of the CNR1 gene. Moreover, treatment of DLD1 and SW620 cells with Met-F-AEA, a stable AEA-analogous, or URB597, a selective inhibitor of FAAH, induced up-regulation of CB1 expression by co-localization of PPARγ and RXRα at the promoting region. Finally, increased availability of AEA, of both exogenous and endogenous sources, induced the expression of estrogen receptor-beta in both cell lines. Our results partially elucidated the role of EC system in the molecular mechanisms enrolled by steroids in the inhibition of colon cancer cell growth and strongly suggested that targeting the EC system could represent a promising tool to improve the efficacy of CRC treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.22727DOI Listing

Publication Analysis

Top Keywords

cancer cell
12
cell growth
12
colon cancer
8
cell lines
8
molecular mechanisms
8
cb1 receptor
8
dld1 sw620
8
sw620 cells
8
up-regulation cb1
8
promoting region
8

Similar Publications

A Integrated Molecule Based on Ferritin Nanoplatforms for Inducing Tumor Ferroptosis with the Synergistic Photo/Chemodynamic Treatment.

ACS Appl Mater Interfaces

January 2025

Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China.

Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated.

View Article and Find Full Text PDF

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.

View Article and Find Full Text PDF

Tension-induced organelle stress: an emerging target in fibrosis.

Trends Pharmacol Sci

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.

Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma.

View Article and Find Full Text PDF

Background: To evaluate the real-world surgical and pathological outcomes following neoadjuvant nivolumab in combination with chemotherapy in a multicentre national cohort of patients.

Methods: Retrospective analysis on consecutive patients treated in three tertiary referral hospitals in UK with neoadjuvant chemotherapy and immunotherapy (nivolumab) for stage II-IIIB nonsmall cell lung cancer (March 2023-May 2024). Surgical and pathological outcomes were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!