This critical review provides a critical discussion of the current state of knowledge of the key factors influencing the solubility of gases in ionic liquids (ILs), including sample purity, experimental methodology, "molecular" characteristics of ILs, temperature and pressure. The review starts with a brief introduction to the current developments and the existing problems in the studies of the gas solubility in ILs. Then, the experimental, computational and theoretical developments in conformational equilibria of ions, in nanosegregated polar and nonpolar domains in ILs, and in the mechanisms for dissolution of gases in ILs are discussed and subsequently collaborated together with our freeze-fracture transmission electron microscopic and Raman measurements to propose the new microscopic mechanism for dissolving the gases in ILs. Next, a critical and quantitative analysis of the influences of the sample purity and the experimental methodology on the gas solubility is made so that the "real" relationships between structure and solubility property can be revealed. In addition, a systematic and deeper understanding of how the "molecular" features of the ILs, the temperature, and the pressure influence the gas solubility is provided at the molecular level. In the section of concluding remarks, the comments are made on the molecular criteria for the future design of the ILs to enhance the gas solubility by specifically optimizing the molecular characteristics of the ILs (265 references).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cs00006j | DOI Listing |
Bioresour Technol
January 2025
Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden. Electronic address:
CO/CH separation is crucial for biogas upgrading. In this study, the bamboo-derived activated carbons (BACs) were prepared with different ratios of potassium hydroxide (KOH)/bamboo charcoal (BC), and the hybrid sorbents of aqueous BACs were developed for CO/CH separation. Both the gas solubility and sorption rate were measured, and Henry's constant and liquid-side mass-transfer coefficient as well as the CO/CH selectivity were calculated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt.
Helicobacter pylori (H. pylori) is an extremely prevalent human pathogen globally that leads to severe illnesses. Sadly, the worldwide issue of H.
View Article and Find Full Text PDFFoods
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.
Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Economics, Kardan University, Kabul, Afghanistan.
The Internet of Things (IoT) has recently attracted substantial interest because of its diverse applications. In the agriculture sector, automated methods for detecting plant diseases offer numerous advantages over traditional methods. In the current study, a new model is developed to categorize plant diseases within an IoT network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!