An efficient method for the synthesis of ester-containing indium homoenolate via a direct insertion of indium into β-halo ester in the presence of CuI/LiCl was described. The synthetic utility of the indium homoenolate was demonstrated by palladium-catalyzed cross-coupling with aryl halides in DMA with wide functional group compatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cc05597bDOI Listing

Publication Analysis

Top Keywords

indium homoenolate
12
synthesis ester-containing
8
ester-containing indium
8
palladium-catalyzed cross-coupling
8
cross-coupling aryl
8
direct synthesis
4
indium
4
homoenolate application
4
application palladium-catalyzed
4
aryl halide
4

Similar Publications

An efficient method for the synthesis of ester-containing indium homoenolate via a direct insertion of indium into β-halo ester in the presence of CuI/LiCl was described. The synthetic utility of the indium homoenolate was demonstrated by palladium-catalyzed cross-coupling with aryl halides in DMA with wide functional group compatibility.

View Article and Find Full Text PDF

An efficient palladium-catalyzed cross-coupling of indium homoenolate with aryl halide is described. The reactions proceeded efficiently in DMA at 100 °C to afford the desired products of β-aryl ketones in moderate to good yields. Various important functional groups including COR, COOR, CHO, CN, OH, and NO(2) can be well tolerated in the protocol.

View Article and Find Full Text PDF

The first water-tolerant, ketone-type indium homoenolate was synthesized via the oxidative addition of In/InCl(3) to enones. The reaction proceeds exclusively in aqueous media. Both indium and indium(III) chloride are necessary for the smooth conversion of the reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!