Aim: To investigate the effect of Ginkgo biloba extract on the enteric neurons in the small intestine of diabetic rats.
Methods: Fifteen Wistar rats were divided into three groups: control group (C), diabetic group (D) and diabetic-treated (DT) daily with EGb 761 extract (50 mg/kg body weight) for 120 d. The enteric neurons were identified by the myosin-V immunohistochemical technique. The neuronal density and the cell body area were also analyzed.
Results: There was a significant decrease in the neuronal population (myenteric plexus P = 0.0351; submucous plexus P = 0.0217) in both plexuses of the jejunum in group D when compared to group C. With regard to the ileum, there was a significant decrease (P = 0.0117) only in the myenteric plexus. The DT group showed preservation of the neuronal population in the jejunum submucous plexus and in the myenteric plexus in the ileum. The cell body area in group D increased significantly (P = 0.0001) in the myenteric plexus of both segments studied as well as in the ileum submucosal plexus, when compared to C. The treatment reduced (P = 0.0001) the cell body area of the submucosal neurons of both segments and the jejunum myenteric neurons.
Conclusion: The purified Ginkgo biloba extract has a neuroprotective effect on the jejunum submucous plexus and the myenteric plexus of the ileum of diabetic rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051139 | PMC |
http://dx.doi.org/10.3748/wjg.v17.i7.898 | DOI Listing |
Gastro Hep Adv
August 2024
Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.
View Article and Find Full Text PDFJ Vet Res
December 2024
Institute of Biology, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland.
Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Medical Oncology, Institut de Cancérologie de L'Ouest, 44805, Saint Herblain, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!