We present the results of systematic studies of ion current rectification performed on artificial asymmetric nanopores with different geometries and dimensions. The nanopores are fabricated by the ion track etching method using surfactant-doped alkaline solutions. By varying the alkali concentration in the etchant and the etching time, control over the pore profile and dimensions is achieved. The pore geometry is characterized in detail using field-emission scanning electron microscopy. The dependence of the ion current rectification ratio on the pore length, tip diameter, and the degree of pore taper is analysed. The experimental data are compared to the calculations based on the Poisson-Nernst-Planck equations. A strong effect of the tip geometry on the diode-like behaviour is confirmed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/17/175302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!