Magnetic anisotropy and spin-glass behavior in single crystalline U2PdSi3.

J Phys Condens Matter

Institute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313, Japan.

Published: February 2011

We present the magnetic and transport properties of single crystalline U(2)PdSi(3) measured with the magnetic field (H) (or measuring current, I) applied along two typical crystallographic directions, i.e. H ⊥ c-axis and H c-axis (or I ⊥ c-axis and I c-axis). For both directions, a spin-glass state is confirmed to form at low temperature with the same spin freezing temperature T(f) (=11.5 K), initial frequency shift δT(f) (=0.023) and activation energy E(a)/k(B) (=90.15 K) in zero dc field. Strong anisotropy in magnetic and transport behavior is found to be a significant feature of U(2)PdSi(3). The unusual ferromagnetic-like anomaly in ac susceptibility and dc magnetization curves around T(m)=71 K is observed in the case of H c-axis but not in the cases of H ⊥ c-axis. The characteristic temperature T(ir), below which evident irreversible magnetism originated from random spin freezing can be observed, shows much stronger field dependence for H ⊥ c-axis than for H c-axis. Moreover, an unusual finding is that the electrical resistivity measurements indicate the formation of magnetic Brillouin-zone boundary gaps and much larger magnetic scattering for I ⊥ c-axis, while the coherent-Kondo-effect-like behavior is obvious for I c-axis. We also emphasize that no resistivity minimum can be detected down to 2.5 K for either direction. The observed magnetic and transport behaviors are compared with those in polycrystalline U(2)PdSi(3) and other 2:1:3 intermetallic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/23/7/076003DOI Listing

Publication Analysis

Top Keywords

⊥ c-axis
20
magnetic transport
12
c-axis c-axis
12
c-axis
10
single crystalline
8
crystalline u2pdsi3
8
spin freezing
8
magnetic
7
5
magnetic anisotropy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!