Objective: Congenital hyperinsulinism in infancy (CHI) is characterized by unregulated insulin secretion from pancreatic β-cells; severe forms are associated with defects in ABCC8 and KCNJ11 genes encoding sulfonylurea receptor 1 (SUR1) and Kir6.2 subunits, which form ATP-sensitive K(+) (K(ATP)) channels in β-cells. Diazoxide therapy often fails in the treatment of CHI and may be a result of reduced cell surface expression of K(ATP) channels. We hypothesized that conditions known to facilitate trafficking of cystic fibrosis transmembrane regulator (CFTR) and other proteins in recombinant expression systems might increase surface expression of K(ATP) channels in native CHI β-cells.

Research Design And Methods: Tissue was isolated during pancreatectomy from eight patients with CHI and from adult cadaver organ donors. Patients were screened for mutations in ABCC8 and KCNJ11. Isolated β-cells were maintained at 37°C or 25°C and in the presence of 1) phorbol myristic acid, forskolin and 3-isobutyl-1-methylxanthine, 2) BPDZ 154, or 3) 4-phenylbutyrate. Surface expression of functional channels was assessed by patch-clamp electrophysiology.

Results: Mutations in ABCC8 were detected for all patients tested (n = 7/8) and included three novel mutations. In five of eight patients, no changes in K(ATP) channel activity were observed under different cell culture conditions. However, in three patients, in vitro recovery of functional K(ATP) channels occurred. Here, we report the first cases of recovery of defective K(ATP) channels in human β-cells using modified cell culture conditions.

Conclusions: Our study establishes the principle that chemical modification of K(ATP) channel subunit trafficking could be of benefit for the future treatment of CHI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064095PMC
http://dx.doi.org/10.2337/db10-1443DOI Listing

Publication Analysis

Top Keywords

katp channels
20
surface expression
12
vitro recovery
8
channels β-cells
8
congenital hyperinsulinism
8
hyperinsulinism infancy
8
abcc8 kcnj11
8
treatment chi
8
expression katp
8
mutations abcc8
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!