Effects of antithrombin III treatment in vascular injury model of mice.

Pediatr Int

Department of Pediatrics, Angiogenesis and Vascular Development, Graduate School of Medical Science, Kanazawa UniversityDepartment of Pediatrics, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan.

Published: October 2011

Background: Balloon angioplasty has recently been adopted as an acceptable form of treatment for stenotic vessel lesions of congenital heart diseases. However, precise mechanisms of restenosis and thrombosis, which are the most common complications after these procedures, are unknown.

Methods: We examined the effects of antithrombin III (ATIII) on inflammation, thrombus formation, and remodeling of vascular wall after guidewire-induced injury in the femoral artery of mice. ATIII or saline was administered as a bolus intravenous infusion before injury.

Results: Seventy-two hours after injury, approximately half of the saline-treated vessels showed macroscopic thrombus formation. In contrast, no thrombi were seen in the arteries pretreated with ATIII. Significantly higher levels of inflammation were induced in the injured vessels than in the sham-operated controls, as determined by CD11b-positive cell density in the adventitial area. ATIII treatment resulted in marked reduction of inflammatory cell infiltration. Twenty-eight days after injury, similar levels of neointimal proliferation were found in the injured arteries in both groups.

Conclusions: Our results suggested that a high dose of ATIII may influence the sequelae of arterial injury by reducing mural thrombus formation and limiting the inflammatory reaction of the vessel wall without altering the process of vascular remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1442-200X.2011.03350.xDOI Listing

Publication Analysis

Top Keywords

thrombus formation
12
effects antithrombin
8
antithrombin iii
8
injury
5
atiii
5
iii treatment
4
treatment vascular
4
vascular injury
4
injury model
4
model mice
4

Similar Publications

Available evidence suggests that various medical/rehabilitation treatments evoke multiple effects on blood hemostasis. It was therefore the aim of our study to examine whether fascial manipulation, vibration exercise, motor imagery, or neuro-muscular electrical stimulation can activate the coagulation system, and, thereby, expose patients to thrombotic risk. Ten healthy young subject were enrolled in the study.

View Article and Find Full Text PDF

[Molecular Mechanism of Protein C Deficiency Caused by Mutations of Gene N355S, G392E, T314A].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou 215006, Jiangsu Province, China.

Objective: To study the molecular mechanism of functional defect of protein C (PC) caused by point mutations of human protein C gene ( ) N355S , G392E and T314A.

Methods: The wild-type and mutant plasmids (PC, PC, PC, PC) of gene were constructed and transiently transfected into HEK293 cells. The expression of mutant proteins in vitro were tested.

View Article and Find Full Text PDF

Introduction: Cardiogenic arterial thromboembolism (CATE) is a life-threatening complication of hypertrophic cardiomyopathy (HCM) with a high mortality rate. As the primary responders in hemostasis, platelets play a crucial role in the progression of CATE. Procoagulant platelets are a subpopulation of activated platelets that facilitate thrombin generation to strengthen thrombus structure.

View Article and Find Full Text PDF

Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by the presence of 2-glycoprotein I (2-GPI)-targeting antiphospholipid antibodies (aPLs) and vascular thrombosis or obstetrical complications. One of its severe manifestations is nephropathy. To examine the role of type I interferon (IFN) and therapeutic potential of tyrosine kinase 2 (Tyk2) inhibition, we administered BMS-986202, a novel Tyk2 inhibitor, in a mouse model of APS nephropathy.

View Article and Find Full Text PDF

Thymidine phosphorylase (TYMP) promotes platelet activation and thrombosis while suppressing vascular smooth muscle cell (VSMC) proliferation. Both processes are central to the development and progression of abdominal aortic aneurysms (AAAs). We hypothesize that TYMP plays a role in AAA development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!