Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cells adapt to oxidative stress by transcriptional activation of genes encoding antioxidants and proteins of other protective roles. A bZIP transcription factor, Pap1, plays a critical role in this process and overexpression of Pap1 confers resistance to various oxidants and drugs in fission yeast. Pap1 temporarily enters the nucleus upon oxidative stress but returns to the cytoplasm once cells adapt to the stress, suggesting that cellular localization regulates Pap1 function. We report here an additional regulatory mechanism that Ubr1 ubiquitin ligase-dependent degradation lowered the Pap1 protein levels. ubr1 cells were causally resistant to hydrogen peroxide because of the increment of Pap1 levels. Pap1 was preferentially degraded in the nucleus where Ubr1 was consistently enriched. Proteolysis was critical to downregulate Pap1 especially when its activation persisted, as constitutively nuclear Pap1 severely inhibited growth in ubr1 mutants. Inactive mutations in the bZIP DNA binding domain stabilized Pap1 but rescued the lethality caused by constitutively active Pap1 in ubr1 mutants. These findings indicate that either nuclear export or Ubr1-mediated proteolysis must be operative to prevent uncontrolled Pap1 function. Coincidental dysfunction in both inhibitory pathways causes lethality because of prolonged activation of Pap1. Ubr1 is a critical regulator for the homeostasis of oxidative stress response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2011.07605.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!