Electrical impedance of spin-coatable ion gel films.

J Phys Chem B

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.

Published: April 2011

The electrical properties (capacitance, resistance, and conductivity) of ion gel films were examined as a function of film geometry and temperature by using electrical impedance spectroscopy. Ion gel films, which consist of a triblock copolymer, poly (styrene-b-methyl methacrylate-b-styrene) [SMS], and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMI][TFSI], were deposited by spin coating from ethyl acetate solution. The thickness (2.2-13.4 μm) and the area (0.01-0.06 cm(2)) of the film sandwiched between two gold electrodes were varied systematically to investigate the relation between the electrical properties and the geometry of the film. The resistance (R) was directly proportional to the thickness and the reciprocal area, as expected, whereas the specific capacitance (C') was insensitive to the film geometry. Importantly, the gel polarization time constants (RC, where C = C' × area) were as small as 2.8 μs for 2.2 μm thick ion gel films. Conductivity and capacitance of the film both increase with increasing temperature, with conductivity following the Vogel-Fulcher-Tamman equation, indicating entropically activated behavior, and capacitance at 10 Hz showing Arrhenius-type activation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp110166uDOI Listing

Publication Analysis

Top Keywords

ion gel
16
gel films
16
electrical impedance
8
electrical properties
8
film geometry
8
gel
5
film
5
electrical
4
impedance spin-coatable
4
ion
4

Similar Publications

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.

View Article and Find Full Text PDF

Mastering the Copolymerization Behavior of Ethyl Cyanoacrylate as Gel Polymer Electrolyte for Lithium-metal Battery Application.

Angew Chem Int Ed Engl

January 2025

Beijing University of Chemical Technology, State Key Laboratory of Organic-Inorganic Composites, 15 North Third Ring Road East, 37830, Beijing, CHINA.

Polymers with strong electron-withdrawing groups (e.g., cyano-containing polymers) are attractive for a wide range of applications due to their high dielectric constant and outstanding electrochemical stability.

View Article and Find Full Text PDF

Electron release and transfer are pivotal to the efficiency of multiple biogeochemical and pollutant processes. Despite substantial efforts to develop electron-transfer characterization techniques, visualization of electron transfer remains challenging. This study introduces an innovative strategy for mapping electron-transfer distance using nanoscale zerovalent iron (nZVI) as a case study.

View Article and Find Full Text PDF

Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!