In the presence of cationic ligands, DNA molecules can become aggregated into larger particles in a process known as condensation. DNA condensates are of interest as models for the dense packing found in naturally occurring structures such as phage heads and chromatin. They have found extensive application in DNA transfection and also provide convenient models with which to study DNA damage by the direct effect of ionizing radiation. Further, conjugates of cationic peptides with fatty acids may represent a class of attractive ligands for these areas because of their simple synthesis. When plasmid pUC18 is used as the DNA target and N-caproyl-penta-arginine amide (Cap-R(5)-NH(2)) is used as the ligand, the physical properties of the resulting mixtures were characterized using static and dynamic light scattering, sedimentation, dye exclusion, circular dichroism, nanoparticle tracking, and atomic force microscopy. Their chemical properties were assayed using solvent extraction and protection against hydroxyl radical attack and nuclease digestion. Titration of the plasmid with the Cap-R(5)-NH(2) ligand produced sharply defined changes in both chemical and physical properties, which was associated with the formation of condensed DNA particles in the 100-2000 nm size range. The caproyl group at the ligand's N-terminus produced a large increase in the partitioning of the resulting condensate from water into chloroform and in its binding to the neutral detergent Pluronic F-127. Both the physical and chemical data were all consistent with condensation of the plasmid by the ligand where the presence in the ligand of the caproyl group conferred an extensive lipophilic character upon the condensate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm200127uDOI Listing

Publication Analysis

Top Keywords

cap-r5-nh2 ligand
8
physical properties
8
caproyl group
8
dna
7
characterization lipophilic
4
plasmid
4
lipophilic plasmid
4
plasmid dna
4
dna condensate
4
condensate formed
4

Similar Publications

Rational design of redox active metal organic frameworks for mediated electron transfer of enzymes.

Mater Horiz

January 2025

Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.

The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.

View Article and Find Full Text PDF

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!