Sequence and structure prediction of RNA-dependent RNA polymerase of lily symptomless virus isolated from L. × 'Casablanca'.

Arch Virol

School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, 116024 Liaoning Province, People's Republic of China.

Published: June 2011

The DNA sequence of the RNA-dependent RNA polymerase (RdRp) gene of lily symptomless virus (LSV), a lily-infecting member of the genus Carlavirus, was determined from nine overlapping cDNA fragments of different sizes. The complete sequence of this RdRp gene (HM070294) consisted of 5,847 nucleotides coding for a protein of 220 kDa. It had 97-98% sequence identity with RdRps of other known isolates at both the DNA and the amino acid level. Phylogenetic analysis indicated that this RdRp (designated as RdRp-DL) was closely related to the RdRp of the Korean isolate (AM516059), as well as to the RdRps from Passiflora latent virus (PLV) and Kalanchoe latent virus (KLV) of the genus Carlavirus. Hydrophobic analysis of RdRp-DL revealed a hydrophobic N-terminus and a hydrophilic C-terminus. Helices and Loops were the major secondary structures of RdRp-DL. In addition, RdRp-DL also had three coil structures. Four conserved domains were identified: typoviral methyltransferase, RNA-dependent RNA polymerase, P-loop-containing nucleoside triphosphate hydrolases and carlavirus endopeptidase. A model of the tertiary structure predicted by I-TASSER was obtained for each of these conserved domains. This is the first report of a detailed phylogenetic analysis of LSV RdRp with those of other members of the genus Carlavirus, and the first to predict the domain structures of LSV RdRp.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-011-0928-9DOI Listing

Publication Analysis

Top Keywords

rna-dependent rna
12
rna polymerase
12
genus carlavirus
12
lily symptomless
8
symptomless virus
8
rdrp gene
8
phylogenetic analysis
8
latent virus
8
conserved domains
8
lsv rdrp
8

Similar Publications

Viral RNA polymerase as a SUMOylation decoy inhibits RNA quality control to promote potyvirus infection.

Nat Commun

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Potyvirids are the largest group of plant RNA viruses. Pelota, a core component of RNA quality controls (RQC), promotes the degradation of potyvirids' genomic RNA by recognizing a specific GA motif. Here we demonstrate that the viral RNA-dependent RNA polymerase, NIb, acts as a SUMOylation decoy to effectively reduce Pelota SUMOylation by competing with SCE1 to inhibit Pelota-mediated RQC.

View Article and Find Full Text PDF

Nipah virus is a highly virulent zoonotic paramyxovirus causing severe respiratory and neurological disease. Despite its lethality, there is no approved treatment for Nipah virus infection. The viral polymerase complex, composed of the polymerase (L) and phosphoprotein (P), replicates and transcribes the viral RNA genome.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.

View Article and Find Full Text PDF

β-coronavirus rearranges the host cellular membranes to form double-membrane vesicles (DMVs) via NSP3/4, which anchor replication-transcription complexes (RTCs), thereby constituting the replication organelles (ROs). However, the impact of specific domains within NSP3/4 on DMV formation and RO assembly remains largely unknown. By using cryogenic-correlated light and electron microscopy (cryo-CLEM), we discovered that the N-terminal and C-terminal domains (NTD and CTD) of SARS-CoV-2 NSP3 are essential for DMV formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!