A conventional and general route has been exploited to the high yield synthesis of many kinds of highly crystalline metal oxide and mixed oxide nanocrystals with different morphologies including belt, rod, truncated-octahedron, cubic, sphere, sheet via the hydrothermal reaction of inorganic precursors in aqueous solution in the presence of bifunctional 6-aminohexanoic acid (AHA) molecules as a capping agent. This method is a simple, reproducible and general route for the preparation of a variety of high-crystalline inorganic nanocrystals in scale-up. The shape of inorganic nanocrystals such as CoWO(4), La(2)(MoO(4))(3) can be controlled by simply adjusting the synthesis conditions including pH solution and reaction temperature. Further, by tuning precursor monomer concentration, the mesocrystal hierarchical aggregated microspheres (e.g., MnWO(4), La(2)(MoO(4))(3)) can be achieved, due to the spontaneous assembly of individual AHA-capped nanoparticles. These obtained AHA-capped nanocrystals are excellent supports for the synthesis of a variety of hybrid metal/oxide nanocrystals in which noble metal particles are uniformly deposited on the surface of each individual nanosupport. The photocatalytic activity of Ag/TiO(2) nanobelts as a typical hybrid photocatalyst sample for Methylene Blue degradation was also studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1nr10109a | DOI Listing |
Inorg Chem
January 2025
Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland.
This paper discusses the origin of emission quenching in yttrium orthovanadate codoped with Eu and Sb ions. Highly crystalline yttrium orthovanadate nanoparticles with chemical composition YEuSbVO ( = 0-5.4 mol %, = 0-2.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tongji University, School of Chemical Science and Engineering, Chifeng Road No.67, Shanghai, CHINA.
The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Furthering the field of synthetic organic chemistry from the discrete molecules regime to the extended structure regime, covalent organic frameworks (COFs) represent a new genre of crystalline porous materials featuring designability with molecular-level precision, well-defined porosity, and exceptional stability imparted by the robust covalent linkages reticulating organic molecules. The topology of COFs is a principal feature that regulates their functionality and usability for emerging technologies. Profound comprehension of network topologies and maneuvering them toward targeted applications are crucial to advancing the realm of COF research and developing novel functional materials for exciting breakthroughs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!