MicroRNAs are small non-coding RNAs approximately 22 nt long that modulate gene expression in animals and plants. It has been recently demonstrated that herpesviruses encode miRNAs to control the post-transcriptional regulation of expression from their own genomes and possibly that of their host, thus adding an additional layer of complexity to the physiological cross-talk between host and pathogen. The present study focussed on the interactions between porcine dendritic cells (DCs) and the Pseudorabies virus (PRV), an alpha-herpesvirus causing Aujeszky's disease in pigs. A catalogue of porcine and viral miRNAs, expressed eight hours post-infection, was established by deep sequencing. An average of 2 million reads per sample with a size of 21-24 nucleotides was obtained from six libraries representing three biological replicates of infected and mock-infected DCs. Almost 95% of reads mapped to the draft pig genome sequence and pig miRNAs previously annotated in dedicated databases were detected by sequence alignment. In silico prediction allowed the identification of unknown porcine as well as of five miRNAs transcribed by the Large Latency Transcript (LLT) of PRV. The gene target prediction of the viral miRNAs and the Ingenuity Pathway Analysis of differentially expressed pig miRNAs were conducted to contextualize the identified small RNA molecules and functionally characterize their involvement in the post-transcriptional regulation of gene expression. The results support a role for PRV miRNAs in the maintenance of the host cell latency state through the down-regulation of immediate-early viral genes which is similar to other herpesviruses. The differentially expressed swine miRNAs identified a unique network of target genes with highly significant functions in the development and function of the nervous system and in infectious mechanisms, suggesting that the modulation of both host and viral miRNAs is necessary for the establishment of PRV latency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050891PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017374PLOS

Publication Analysis

Top Keywords

viral mirnas
12
mirnas
9
host viral
8
porcine dendritic
8
dendritic cells
8
pseudorabies virus
8
gene expression
8
post-transcriptional regulation
8
pig mirnas
8
differentially expressed
8

Similar Publications

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection.

View Article and Find Full Text PDF

The mechanisms underlying post-acute sequelae of SARS-CoV-2 infection (PASC) are a topic of debate. This study examined the presence of SARS-CoV-2 microRNA (miRNA)-like small RNAs in extracellular fluids and their potential link to PASC by using a quantitative stem-loop RT-PCR MiRNA assay. Initially, it was demonstrated that three previously identified SARS-CoV-2 miRNA-like small RNAs, specifically svRNA 1 and 2 and miR-07a, were significantly expressed in infected cells in vitro and released into the supernatant following infection by different SARS-CoV-2 variants.

View Article and Find Full Text PDF

Identifying biomarkers of mycotoxin effects in chickens will provide an opportunity for early intervention to reduce the impact of mycotoxicosis. This study aimed to identify whether serum enzyme concentrations, gut integrity, and liver miRNAs can be potential biomarkers for fumonisin B1 (FB1), deoxynivalenol (DON), and zearalenone (ZEA) toxicity in broiler birds as early as 14 days after exposure. A total of 720 male broiler chicks were distributed to six treatment groups: T1: control group (basal diet), T2 (2 FB1 + 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!