Neurons controlling Aplysia feeding inhibit themselves by continuous NO production.

PLoS One

The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, and The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.

Published: March 2011

Background: Neural activity can be affected by nitric oxide (NO) produced by spiking neurons. Can neural activity also be affected by NO produced in neurons in the absence of spiking?

Methodology/principal Findings: Applying an NO scavenger to quiescent Aplysia buccal ganglia initiated fictive feeding, indicating that NO production at rest inhibits feeding. The inhibition is in part via effects on neurons B31/B32, neurons initiating food consumption. Applying NO scavengers or nitric oxide synthase (NOS) blockers to B31/B32 neurons cultured in isolation caused inactive neurons to depolarize and fire, indicating that B31/B32 produce NO tonically without action potentials, and tonic NO production contributes to the B31/B32 resting potentials. Guanylyl cyclase blockers also caused depolarization and firing, indicating that the cGMP second messenger cascade, presumably activated by the tonic presence of NO, contributes to the B31/B32 resting potential. Blocking NO while voltage-clamping revealed an inward leak current, indicating that NO prevents this current from depolarizing the neuron. Blocking nitrergic transmission had no effect on a number of other cultured, isolated neurons. However, treatment with NO blockers did excite cerebral ganglion neuron C-PR, a command-like neuron initiating food-finding behavior, both in situ, and when the neuron was cultured in isolation, indicating that this neuron also inhibits itself by producing NO at rest.

Conclusion/significance: Self-inhibitory, tonic NO production is a novel mechanism for the modulation of neural activity. Localization of this mechanism to critical neurons in different ganglia controlling different aspects of a behavior provides a mechanism by which a humeral signal affecting background NO production, such as the NO precursor L-arginine, could control multiple aspects of the behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052382PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017779PLOS

Publication Analysis

Top Keywords

neural activity
12
neurons
9
nitric oxide
8
b31/b32 neurons
8
cultured isolation
8
tonic production
8
contributes b31/b32
8
b31/b32 resting
8
aspects behavior
8
production
5

Similar Publications

Objective: Extraversion is a fundamental personality dimension that contributes to an individual's overall health and well-being. Many studies have examined the neural bases of extraversion but these results are inconsistent. This study adopted a meta-analysis approach to examine the brain activity correlates of extraversion by incorporating functional neuroimaging studies in the context of positive affect/emotional stimuli.

View Article and Find Full Text PDF

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF

Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.

View Article and Find Full Text PDF

Role of the ventral portion of intermediate arcopallium in stability of female Bengalese finch song preferences.

Front Psychol

January 2025

Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.

The process of decision making is a complex procedure influenced by both external and internal conditions. Songbirds provide an excellent model to investigate the neural mechanisms of decision making, because females rely on acoustic signals called songs as important stimuli in directing their mate choice. Previous experiments by our group and others have implicated secondary auditory brain sites in female evaluation of song quality, including the caudal portions of the nidopallium (NC) and mesopallium (CM).

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!