Genome instability continuously presents perils of cancer, genetic disease and death of a cell or an organism. At the same time, it provides for genome plasticity that is essential for development and evolution. We address here the genome instability confined to a small fraction of DNA adjacent to free DNA ends at uncapped telomeres and double-strand breaks. We found that budding yeast cells can tolerate nearly 20 kilobase regions of subtelomeric single-strand DNA that contain multiple UV-damaged nucleotides. During restoration to the double-strand state, multiple mutations are generated by error-prone translesion synthesis. Genome-wide sequencing demonstrated that multiple regions of damage-induced localized hypermutability can be tolerated, which leads to the simultaneous appearance of multiple mutation clusters in the genomes of UV- irradiated cells. High multiplicity and density of mutations suggest that this novel form of genome instability may play significant roles in generating new alleles for evolutionary selection as well as in the incidence of cancer and genetic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100884PMC
http://dx.doi.org/10.4161/cc.10.7.15319DOI Listing

Publication Analysis

Top Keywords

genome instability
12
damage-induced localized
8
localized hypermutability
8
cancer genetic
8
genetic disease
8
genome
4
hypermutability genome
4
instability continuously
4
continuously presents
4
presents perils
4

Similar Publications

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Background: The risk of developing advanced neoplasia (AN; colorectal cancer and/or high-grade dysplasia) in ulcerative colitis (UC) patients with a low-grade dysplasia (LGD) lesion is variable and difficult to predict. This is a major challenge for effective clinical management.

Objective: We aimed to provide accurate AN risk stratification in UC patients with LGD.

View Article and Find Full Text PDF

LINE-1 retrotransposons, comprising 17% of the genome, drive cancer instability through hypomethylation. The DIAMOND assay, targeting LINE-1 hypomethylation with bisulfite sequencing of cell free DNA, achieved AUCs of 88% to 100% across six cancer types, surpassing mutation-based diagnostics and suggesting utility in early cancer detection and management.

View Article and Find Full Text PDF

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Comprehensive evaluation of genomic and functional assays for homologous recombination deficiency with high-grade epithelial ovarian cancer: Platinum sensitivity and prognosis.

Int J Gynecol Cancer

January 2025

Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China. Electronic address:

Objective: Homologous recombination deficiency assays, guiding treatment of poly (adenosine diphosphate ribose) polymerase inhibitors, are increasingly applied in clinics. This study aimed to evaluate the predictive performance of homologous recombination deficiency status at genomic and functional perspective on the efficacy of platinum-based chemotherapy in ovarian cancer.

Methods: Between 2016 and 2019, 134 patients with high-grade ovarian cancer were retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!