A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

First-principles study on thermodynamic properties and phase transitions in TiS(2). | LitMetric

First-principles study on thermodynamic properties and phase transitions in TiS(2).

J Phys Condens Matter

Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.

Published: February 2011

Structural and vibrational properties of TiS(2) with the CdI(2) structure have been studied to high pressures from density functional calculations with the local density approximation (LDA). The calculated axial compressibility of the CdI(2)-type phase agrees well with experimental data and is typical of layered transition-metal dichalcogenides. The obtained phonon dispersions show a good correspondence with available experiments. A phonon anomaly is revealed at 0 GPa, but is much reduced at 20 GPa. The thermodynamic properties of this phase were also calculated at high pressures and high temperatures using the quasi-harmonic approximation. Our LDA study on the pressure-induced phase transition sequence predicts that the CdI(2)-type TiS(2), the phase stable at ambient conditions, should transform to the cotunnite phase at 15.1 GPa, then to a tetragonal phase (I4/mmm) at 45.0 GPa. The tetragonal phase remains stable to at least 500 GPa. The existence of the tetragonal phase at high pressures is consistent with our previous findings in NiS(2) (Yu and Ross 2010 J. Phys.: Condens. Matter 22 235401). The cotunnite phase, although only stable in a narrow pressure range between 15.1 and 45.0 GPa, displays the formation of a compact S network between 100 and 200 GPa, which is evidenced by a kink in the variation of unit cell lengths with pressure. The electron density analysis in cotunnite shows that valence electrons are delocalized from Ti atoms and concentrated near the S network.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/23/5/055401DOI Listing

Publication Analysis

Top Keywords

high pressures
12
tetragonal phase
12
phase
10
thermodynamic properties
8
properties phase
8
approximation lda
8
phase stable
8
cotunnite phase
8
first-principles study
4
study thermodynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!