Using ab initio calculations, we have evaluated two structural descriptions of γ-Al(2)O(3), spinel and tetragonal hausmannite, and explored the relative stability of γ-Al(2)O(3) with respect to α-Al(2)O(3) with 2.5 at.% of Si, Cr, Ti, Sc, and Y additives to identify alloying element induced electronic structure changes that impede the γ to α transition. The total energy calculations indicate that Si stabilizes γ-Al(2)O(3), while Cr stabilizes α-Al(2)O(3). As Si is added, a bond length increase in α-Al(2)O(3) is observed, while strong and short Si-O bonds are formed in γ-Al(2)O(3), consequently stabilizing this phase. On the other hand, Cr additions induce a smaller bond length increase in α-Al(2)O(3) than in γ-Al(2)O(3), therefore stabilizing the α-phase. The bulk moduli of γ-Al(2)O(3) with these additives show no significant changes. The phase stability and elastic property data discussed here underline the application potential of Si alloyed γ-Al(2)O(3) for applications at elevated temperatures. Furthermore it is evident that the tetragonal hausmannite structure is a suitable description for γ-Al(2)O(3).

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/50/505502DOI Listing

Publication Analysis

Top Keywords

phase stability
8
γ-al2o3
8
tetragonal hausmannite
8
bond length
8
length increase
8
increase α-al2o3
8
ab initio study
4
study effects
4
effects substitutional
4
substitutional additives
4

Similar Publications

Background: McKittrick-Wheelock syndrome is an uncommon and severe disorder caused by large hypersecretory tumors located in the distal colorectal area. Excessive secretion from adenomas is an unusual clinical manifestation that leads to severe electrolyte and fluid depletion, subsequently resulting in kidney injury. Successful treatment relies on quick and cooperative decision-making for timely intervention.

View Article and Find Full Text PDF

The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.

View Article and Find Full Text PDF

Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center.

View Article and Find Full Text PDF

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!