Chemically induced proximity (CIP) systems use small molecules and engineered proteins to control and study biological processes. However, small molecule-based systems for controlling protein abundance or activities have been limited by toxicity, instability, cost, and slow clearance of the small molecules in vivo. To address these problems, we modified proteins of the plant abscisic acid (ABA) stress response pathway to control the proximity of cellular proteins and showed that the system could be used to regulate transcription, signal transduction, and subcellular localization of proteins in response to exogenously applied ABA. We also showed that the ABA CIP system can be combined with other CIP systems to simultaneously control multiple processes. We found that, when given to mice, ABA was orally available and had a 4-hour half-life. These properties, along with its lack of toxicity and low cost, suggest that ABA may be well suited for therapeutic applications and as an experimental tool to control diverse cellular activities in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110149 | PMC |
http://dx.doi.org/10.1126/scisignal.2001449 | DOI Listing |
Int Ophthalmol
January 2025
Department of Ophthalmology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany.
Purpose: Uveal melanoma (UM) is the most common primary ocular malignancy. The size and location of the tumor are decisive for brachytherapy with the β-emitting ruthenium-106 (Ru-106) plaque. The treatment of juxtapapillary and juxtafoveolar UM may be challenging because of the proximity or involvement of the macula and optic nerve and high recurrence rates.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
All time-scale decomposition (ATD) is a non-parametric adaptive signal decomposition method, which relies on zero-crossing points and extreme points to jointly construct the baseline, achieving the suppression of modal mixing caused by the proximity of component frequencies. However, ATD is unable to solve mode mixing induced by noise. To improve this defect, a new noise-assisted signal decomposition method named ensemble all time-scale decomposition (EATD) is proposed in this paper.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Laoshan Laboratory, Qingdao 266237, China.
Nucleation of multicomponent systems is a pervasive phenomenon in nature and is pertinent to a diverse array of scientific and industrial challenges. The nucleation mechanisms of immiscible multicomponent systems remain unclear. Here, gas hydrate is employed as a model system to study the nucleation of multicomponent systems.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!