Capture of infectious borna disease virus using anionic polymer-coated magnetic beads.

Neurosci Lett

Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.

Published: May 2011

Borna disease virus (BDV) is a noncytolytic, neurotrophic virus that infects a range of vertebrates, including all warm-blooded animals and possibly humans. Although BDV infections are thought to cause neurological disorders, evidence of the presence of the virus in tissues or blood of psychiatric patients is limited, possibly due to the low sensitivity of detection methods. Here, a simple method for capturing BDV has been developed using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). The beads were incubated with lysate from BDV-infected cells, then separated from the supernatant by applying a magnet field and washed. The adsorption of BDV by the beads was confirmed by reverse transcription-polymerase chain reaction and Western blotting, which indicated the presence of the phosphoprotein (P), nucleoprotein (N), and viral genome of BDV on the incubated beads. This method of capture may contribute to the improved detection of BDV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2011.03.023DOI Listing

Publication Analysis

Top Keywords

borna disease
8
disease virus
8
magnetic beads
8
bdv
6
beads
5
capture infectious
4
infectious borna
4
virus
4
virus anionic
4
anionic polymer-coated
4

Similar Publications

The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93).

View Article and Find Full Text PDF

Introduction: Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development.

View Article and Find Full Text PDF

In amyotrophic lateral sclerosis (ALS), early mitochondrial dysfunction may contribute to progressive motor neuron loss. Remarkably, the ectopic expression of the Orthobornavirus bornaense type 1 (BoDV-1) X protein in mitochondria blocks apoptosis and protects neurons from degeneration. Therefore, this study examines the neuroprotective effects of X protein in an ALS mouse model.

View Article and Find Full Text PDF

Epigenetic Targeting for Controlling Persistent Neurotropic Infections Caused by Borna Virus and HIV.

Rev Med Virol

January 2025

Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Long-lasting persistence within infected cells is a major challenge for viral pathogens, as it necessitates an exact regulation of viral replication to reduce viral cytopathic effects. This is particularly challenging for viruses that persistently infect cells with limited renewal capabilities, such as neurons. Accordingly, neurotropic viruses have evolved various specific mechanisms to promote a long-lasting persistent infection in the host cells without inducing an exacerbated cytopathic effect.

View Article and Find Full Text PDF

Introduction: In severe cases, an infection with the Borna Disease Virus 1 (BoDV-1), the causative agent of Borna disease in horses, sheep, and other domestic mammals, was reported to be accompanied by cognitive dysfunctions, seizures, deep coma, or severe to fatal encephalitis in humans. In addition, asymptomatic or mild courses of BoDV-1 infection are discussed to act as a co-factor in the etiology of Major Depressive Disorder (MDD). Previously, studies using electroencephalography (EEG) reported BoDV-1-dependent changes in event-related potentials (ERPs), thus indicating the use and added value of non-invasive studies in Borna research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!