Although the locations of glutamate receptors along the On and Off pathways have been determined, how these receptors modulate the retinal outputs--the light-evoked and spontaneous activities of individual ganglion cells--is not fully understood in the mouse retina. Specifically, how these receptors mediate On and Off responses of retinal ganglion cells in mouse retina under light adaptation remains unknown. Since mouse retina has become a powerful model for vision research, the functions of glutamate receptors along the On and Off pathways in mouse need to be determined. In the current study, the light-evoked and spontaneous excitatory postsynaptic currents (light-evoked EPSCs and sEPSCs) from On, Off and On-Off retinal ganglion cells (RGCs) were recorded using whole-cell patch-clamp recordings to assess how NMDA and AMPA/KA receptors modulate the retinal outputs of RGCs in the light-adapted mouse retina. We found NMDA and AMPA/KA played different roles in light-evoked EPSCs along On and Off pathways in light-adapted mice retinas. Both NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP-5) and AMPA/KA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) acted on RGCs to reduce On responses of ganglion cells while they acted on Off-cone bipolar cells and/or ganglion cells to mediate Off responses of RGCs. Co-application of AP-5 and CNQX completely eliminated the Off responses in majority of RGCs, indicating that both NMDA and AMPA/KA receptors are critical for light signaling along the cone-driven Off pathways in the light-adapted mouse retina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2011.03.017 | DOI Listing |
FASEB J
January 2025
Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Retinal pathological angiogenesis (PA) is a common hallmark in proliferative retinopathies, including age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and retinopathy of prematurity (ROP). The mechanisms underlying PA is complex and incompletely understood. In this study, we investigated the role of extracellular matrix (ECM) protein biglycan (BGN) in PA using an oxygen-induced retinopathy (OIR) mouse model, along with hypoxia (1% O) conditions for incubating pericytes and endothelial cells in vitro.
View Article and Find Full Text PDFExp Eye Res
January 2025
Institute of Biomedical Engineering, University of Montréal, Montréal, Canada; Research Center, CHU Sainte-Justine University Hospital Centre, Montréal, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Montréal, Canada. Electronic address:
The morphology and thickness of the retinal layers are valuable biomarkers for retinal health and development. The retinal layers in mice are similar to those in humans; thus, a mouse is appropriate for studying the retina. The objectives of this systematic review were: (1) to describe normal retinal morphology quantitatively using retinal layer thickness measured from birth to age 6 months in healthy mice; and (2) to describe morphological changes in physiological retinal development over time using the longitudinal (in vivo) and cross-sectional (ex vivo) data from the included studies.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Late-onset Alzheimer's Disease (LOAD) is the predominant form of Alzheimer's disease (AD), and apolipoprotein E (APOE) ε4 is a strong genetic risk factor for LOAD. As an integral part of the central nervous system, the retina displays a variety of abnormalities in LOAD. Our study is focused on age-dependent retinal impairments in humanized APOE4-knock-in (KI) and APOE3-KI mice developed by the Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium.
View Article and Find Full Text PDFNat Commun
January 2025
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, China.
Current treatments for fundus disorders, such as intravitreal injections, pose risks, including infection and retinal detachment, and are limited in their ability to deliver macromolecular drugs across the blood‒retinal barrier. Although non-invasive methods are safer, their delivery efficiency remains suboptimal (<5%). We have developed a wearable electrodriven switch (WES) that improves the non-invasive delivery of macromolecules to the fundus.
View Article and Find Full Text PDFElife
January 2025
Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States.
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!