Introduction: Alzheimer's disease (AD) is widely recognized as a serious public health problem and heavy financial burden. Currently, there is no treatment that can delay or stop the progressive brain damage in AD. Recently, we demonstrated that stem cell factor (SCF) in combination with granulocyte colony-stimulating factor (G-CSF) (SCF+G-CSF) has therapeutic effects on chronic stroke. The purpose of the present study is to determine whether SCF+G-CSF can reduce the burden of β-amyloid deposits in a mouse model of AD.
Methods: APP/PS1 transgenic mice were used as the model of AD. To track bone marrow-derived cells in the brain, the bone marrow of the APP/PS1 mice was replaced with the bone marrow from mice expressing green fluorescent protein (GFP). Six weeks after bone marrow transplantation, mice were randomly divided into a saline control group and a SCF+G-CSF-treated group. SCF in combination with G-CSF was administered subcutaneously for 12 days. Circulating bone marrow stem cells (CD117+ cells) were quantified 1 day after the final injection. Nine months after treatment, at the age of 18 months, mice were sacrificed. Brain sections were processed for immunohistochemistry to identify β-amyloid deposits and GFP expressing bone marrow-derived microglia in the brain.
Results: Systemic administration of SCF+G-CSF to APP/PS1 transgenic mice leads to long-term reduction of β-amyloid deposition in the brain. In addition, we have also observed that the SCF+G-CSF treatment increases circulating bone marrow stem cells and augments bone marrow-derived microglial cells in the brains of APP/PS1 mice. Moreover, SCF+G-CSF treatment results in enhancement of the co-localization of bone marrow-derived microglia and β-amyloid deposits in the brain.
Conclusions: These data suggest that bone marrow-derived microglia play a role in SCF+G-CSF-induced long-term effects to reduce β-amyloid deposits. This study provides insights into the contribution of the hematopoeitic growth factors, SCF and G-CSF, to limit β-amyloid accumulation in AD and may offer a new therapeutic approach for AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226270 | PMC |
http://dx.doi.org/10.1186/alzrt67 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (T.H., M.E.R., O.Y., G.N.K., N.O., T.K., L.N., D.L.P., K.C.S.).
Background: Power-controlled radiofrequency ablation with irrigated-tip catheters has been the norm for ventricular ablation for almost 2 decades. New catheter technology has recently integrated more accurate tissue temperature sensing enabling temperature-controlled irrigated ablation. We aimed to investigate the in vivo ablation parameters and lesion formation characteristics in ventricular myocardium using a novel temperature-controlled radiofrequency catheter.
View Article and Find Full Text PDFRegen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFExamining the impacts of natural and anthropogenic influences on aquatic macrophytes in shallow lakes is crucial for their effective restoration and management. However, there is a lack of direct evidence regarding past species composition or detailed and continuous evidence of recent changes in aquatic macrophyte communities. This study utilized plant macrofossil remains deposited in the sediment, combined with macrophyte surveys from 1983 to 2010, to reconstruct the historical changes in the macrophyte community over approximately 160 years in Lake Weishan, a sub-lake of Lake Nansi located in the lower Yellow River (Huanghe River) Basin, northern China.
View Article and Find Full Text PDFBrain Commun
January 2025
Institute and Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
Early-onset Alzheimer's disease constitutes ∼5-10% of Alzheimer's disease. Its clinical characteristics and biomarker profiles are not well documented. To compare the characteristics covering clinical, neuropsychological and biomarker profiles between patients with early- and late-onset Alzheimer's disease, we enrolled 203 patients (late-onset Alzheimer's disease = 99; early-onset Alzheimer's disease = 104) from a Chinese hospital-based cohort, the Shanghai Memory Study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!