The 10% of patients with the most severe asthma are responsible for a large part of healthcare expenditure and morbidity. Understanding the processes involved is key if new therapeutic approaches are to be developed. Evidence is accumulating that chronic diseases such as asthma are associated with temporal and spatial alterations in the pattern of inflammatory gene expression within the airways. Expression of these genes can be regulated by transcriptional, posttranscriptional, translational and epigenetic mechanisms. It is well established that binding of activated transcription factors to specific inducible gene promoter sites is tightly controlled by chromatin state as a result of histone modifications, particularly the balance between histone acetylation and deacetylation [1]. The interaction between transcription factors and the promoter is key to the diversification of gene expression in a time dependent manner leading to altered gene expression profiles. Alterations of the accessibility of transcription factors to the DNA can have residing effects upon gene transcription. This review will focus on the regulation of several groups of key genes which are involved in chronic airway inflammation and remodelling in asthma drawing mainly from our experience of studying these processes in airway smooth muscle cells. An overview is shown in figure 1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138161211795429000 | DOI Listing |
Curr Protein Pept Sci
January 2025
Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi-75270, Pakistan.
Background: Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
Introduction: Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.
View Article and Find Full Text PDFBackground: Axial Spondyloarthritis (axSpA) is a chronic inflammatory rheumatic condition affecting the axial skeleton, leading to pain, stiffness, and fatigue. While biologic therapies have improved clinical management, many patients experience partial or no responses, resulting in delays in disease control. Additionally, the risk of adverse events and increased costs remains a concern.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!