Background: Oral-sustained release gel formulations with suitable rheological properties have been proposed as a means of improving the compliance of dysphagic and geriatric patients who have difficulties with handling and swallowing oral dosage forms.

Aim: We have modified the rheological and release properties of thermally reversible methylcellulose solutions by admixture with pectin, the gelation of which is ion-responsive, with the aim of formulating an in situ gelling vehicle suitable for oral-sustained drug delivery.

Method: Gels formed by solutions containing methylcellulose (1.0-2.0%) and pectin (0.5-2.0%) were assessed for suitable gel strength, and in vitro and in vivo release of paracetamol.

Results: Addition of 1.5% pectin to a 2.0% methylcellulose formulation containing 20% d-sorbitol and calcium ions in complexed form increased the gel strength and provided a formulation with a suitable viscosity for ease of swallowing by dysphagic patients. Gels formed in situ after oral administration of this formulation retained their integrity in the rat stomach for sufficient time for sustained release to be achieved. In vitro release of paracetamol from methylcellulose, pectin, and methylcellulose/pectin gels was diffusion-controlled. Plasma levels of paracetamol after oral administration to rats (gastric pH 2.6 and 5.5) of a solution including 2.0% methylcellulose/1.5% pectin showed improved sustained release compared with that from both 2.0% methylcellulose and 1.5% pectin solutions.

Conclusions: The addition of suitable concentrations of pectin to methylcellulose solutions produces in situ gelling formulations with suitable viscosity for administration to dysphagic patients and improved sustained release characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2010.541465DOI Listing

Publication Analysis

Top Keywords

situ gelling
12
dysphagic patients
12
sustained release
12
oral-sustained drug
8
formulations suitable
8
methylcellulose solutions
8
gels formed
8
gel strength
8
15% pectin
8
20% methylcellulose
8

Similar Publications

Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.

View Article and Find Full Text PDF

An in-situ forming controlled release soft hydrogel-based C5a peptidase drug delivery system to treat psoriasis.

Int J Pharm

January 2025

Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:

The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.

View Article and Find Full Text PDF

The work aims to develop mucoadhesive and thermo-responsive in situ gelling systems, using hydrophobically-modified hydroxypropyl-methyl cellulose (Sangelose, SG) and beta-cyclodextrin (β-CD) derivatives, for preventing viral respiratory infections. Eight SG/CD systems with varying CD concentrations were evaluated for rheological properties, mucoadhesiveness, spreadability and sprayability via nasal devices; cytotoxicity was in vitro investigated on reconstituted nasal epithelia. Additionally, droplet size distribution and spray deposition were assessed for the most promising systems.

View Article and Find Full Text PDF

The study focuses on the development of an in situ gelling dexamethasone (DEX) oromucosal formulation designed for the treatment of aphthous stomatitis. Three series of formulations were prepared; a first series containing DEX suspended, a second series containing DEX and, in addition, mint essential oil (EO), and a third series containing EO and DEX solubilized in propylene glycol (PG). In the composition, polymers in the role of mucoadhesive agent were interchanged (hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), carboxymethyl cellulose (CMC), and sodium carboxymethyl cellulose (NaCMC).

View Article and Find Full Text PDF

Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ's ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!