Influence of impurities on solitons in the nonlinear LC transmission line.

Phys Rev E Stat Nonlin Soft Matter Phys

The Key Laboratory of Modern Acoustics, Ministry of Education, and Institute of Acoustics, Nanjing University, Nanjing, 210093, China.

Published: January 2011

This paper studies the propagation of solitons in the nonlinear LC transmission line (NLCTL) with capacitor impurity. Based on Kirchhoff's laws, the numerical simulation shows that the amplitude of the soliton will be increased or decreased when it is close to the positive or negative impurity. Then, it will be split into reflected and transmitted waves by both the positive and negative impurities. Furthermore, their final amplitude and propagating speeds are almost independent of the impurity polarity. The observations near the impurity can be understood in the physical picture of the linear uncoupled energy absorption. By these results, we find that the impurity-soliton interactions (ISIs) in NLCTLs for both inductance and capacitance impurities, which have been seen to be different before, actually can be unified. They also indicate that the ISIs in NLCTLs essentially can be integrated with those in many other soliton systems, such as the Frenkel-Kontorova model and hydrodynamics. Moreover, the impurity-induced influence on the NLCTL solitons can also be well interpreted in the framework of the nonlinear Schrödinger model with an impurity term derived from the discrete voltage propagation equations by means of the perturbation method.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.83.016601DOI Listing

Publication Analysis

Top Keywords

solitons nonlinear
8
nonlinear transmission
8
positive negative
8
isis nlctls
8
impurity
5
influence impurities
4
impurities solitons
4
transmission paper
4
paper studies
4
studies propagation
4

Similar Publications

We propose a general approach to quasi-deform the Korteweg-De Vries (KdV) equation by deforming its Hamiltonian. The standard abelianization process based on the inherent sl(2) loop algebra leads to an infinite number of anomalous conservation laws, that yield conserved charges for definite space-time parity of the solution. Judicious choice of the deformed Hamiltonian yields an integrable system with scaled parameters as well as a hierarchy of deformed systems, some of which possibly are quasi-integrable.

View Article and Find Full Text PDF

We develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.

View Article and Find Full Text PDF

In this study, the -model expansion method is showed to be useful for finding solitary wave solutions to the Klein-Gordon (KG) equation. We develop a variety of solutions, including Jacobi elliptic functions, hyperbolic forms, and trigonometric forms, so greatly enhancing the range of exact solutions attainable. The 2D, 3D, and contour plots clearly show different types of solitary waves, like bright, dark, singular, and periodic solitons.

View Article and Find Full Text PDF

The fractional nonlinear Schrödinger equation: Soliton turbulence, modulation instability, and extreme rogue waves.

Chaos

January 2025

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

In this paper, we undertake a systematic exploration of soliton turbulent phenomena and the emergence of extreme rogue waves within the framework of the one-dimensional fractional nonlinear Schrödinger (FNLS) equation, which appears in many fields, such as nonlinear optics, Bose-Einstein condensates, plasma physics, etc. By initiating simulations with a plane wave modulated by small noise, we scrutinized the universal regimes of non-stationary turbulence through various statistical indices. Our analysis elucidates a marked increase in the probability of rogue wave occurrences as the system evolves within a certain range of Lévy index α, which can be ascribed to the broadened modulation instability bandwidth.

View Article and Find Full Text PDF

In applied research, fractional calculus plays an important role for comprehending a wide range of intricate physical phenomena. One of the Klein-Gordon model's peculiar case yields the Phi-four equation. Additionally, throughout the past few decades it has been utilized to explain the kink and anti-kink solitary waveform contacts that occur in biological systems and in the field of nuclear mechanics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!