Scanning tunneling spectroscopic studies of Ba(Fe(1-x)Co(x))(2)As(2) (x=0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition T(c). The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave vectors (±π, 0) and (0, ±π) are consistent with sign-changing s-wave superconductivity. The excess zero-bias conductance and the large gap-to-T(c) ratios suggest dominant unitary impurity scattering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.106.087004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!