A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tunable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the interqubit coupling strength can be arbitrarily tuned over nanosecond time scales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over distances much larger than nearest-neighbor. Such design flexibility is likely to be useful for a scalable quantum computer.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.106.060501DOI Listing

Publication Analysis

Top Keywords

superconducting qubits
8
fast tunable
4
tunable coupler
4
coupler superconducting
4
qubits
4
qubits major
4
major challenge
4
challenge field
4
field quantum
4
quantum computing
4

Similar Publications

Quantum computing is on the cusp of transforming the way we tackle complex problems, and the Grover search algorithm exemplifying its potential to revolutionize the search for unstructured large datasets, offering remarkable speedups over classical methods. Here, we report results for the implementation and characterization of a three-qubit Grover search algorithm using the state-of-the-art scalable quantum computing technology of superconducting quantum architectures. To delve into the algorithm's scalability and performance metrics, our investigation spans the execution of the algorithm across all eight conceivable single-result oracles, alongside nine two-result oracles, employing IBM Quantum's 127-qubit quantum computers.

View Article and Find Full Text PDF

Quantum Circuit Architecture Search on a Superconducting Processor.

Entropy (Basel)

November 2024

Beijing Academy of Quantum Information Sciences, Beijing 100193, China.

Variational quantum algorithms (VQAs) have shown strong evidence to gain provable computational advantages in diverse fields such as finance, machine learning, and chemistry. However, the heuristic ansatz exploited in modern VQAs is incapable of balancing the trade-off between expressivity and trainability, which may lead to degraded performance when executed on noisy intermediate-scale quantum (NISQ) machines. To address this issue, here, we demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique, i.

View Article and Find Full Text PDF

Quantum computing is currently hindered by hardware noise. We present a freestyle superconducting pulse optimization method, incorporating two-qubit channels, that enhances flexibility, execution speed, and noise resilience. A minimal 0.

View Article and Find Full Text PDF

Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.

View Article and Find Full Text PDF

Quantum Turnstiles for Robust Measurement of Full Counting Statistics.

Phys Rev Lett

December 2024

Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.

We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!