We report a measurement of the positive muon lifetime to a precision of 1.0 ppm; it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2×10(12) decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give τ(μ(+)) (MuLan)=2 196 980.3(2.2)  ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G(F) (MuLan)=1.166 378 8(7)×10(-5)  GeV(-2) (0.6 ppm). It is also used to extract the μ(-)p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g(P).

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.106.041803DOI Listing

Publication Analysis

Top Keywords

muon lifetime
12
measurement positive
8
positive muon
8
fermi constant
8
muon
4
lifetime
4
lifetime determination
4
determination fermi
4
constant part-per-million
4
part-per-million precision
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!