A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metastable BrO2+ and NBr2+ molecules in the gas phase. | LitMetric

Metastable BrO2+ and NBr2+ molecules in the gas phase.

J Chem Phys

Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, Brazil.

Published: March 2011

The doubly positively charged gas-phase molecules BrO(2+) and NBr(2+) have been produced by prolonged high-current energetic oxygen (17 keV (16)O(-)) ion surface bombardment (ion beam sputtering) of rubidium bromide (RbBr) and of ammonium bromide (NH(4)Br) powdered ionic salt samples, respectively, pressed into indium foil. These novel species were observed at half-integer m∕z values in positive ion mass spectra for ion flight times of roughly ∼12 μs through a magnetic-sector secondary ion mass spectrometer. Here we present these experimental results and combine them with a detailed theoretical investigation using high level ab initio calculations of the ground states of BrO(2+) and NBr(2+), and a manifold of excited electronic states. NBr(2+) and BrO(2+), in their ground states, are long-lived metastable gas-phase molecules with well depths of 2.73 × 10(4) cm(-1) (3.38 eV) and 1.62 × 10(4) cm(-1) (2.01 eV); their fragmentation channels into two monocations lie 2.31 × 10(3) cm(-1) (0.29 eV) and 2.14 × 10(4) cm(-1) (2.65 eV) below the ground state minimum. The calculated lifetimes for NBr(2+) (v(") < 35) and BrO(2+) (v(") < 18) are large enough to be considered stable against tunneling. For NBr(2+), we predicted R(e) = 3.051 a(0) and ω(e) = 984 cm(-1); for BrO(2+), we obtained 3.033 a(0) and 916 cm(-1), respectively. The adiabatic double ionization energies of BrO and NBr to form metastable BrO(2+) and NBr(2+) are calculated to be 30.73 and 29.08 eV, respectively. The effect of spin-orbit interactions on the low-lying (Λ + S) states is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3562121DOI Listing

Publication Analysis

Top Keywords

bro2+ nbr2+
16
104 cm-1
12
metastable bro2+
8
gas-phase molecules
8
ion mass
8
ground states
8
nbr2+ bro2+
8
nbr2+
7
bro2+
6
cm-1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!