Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dichlorvos [2,2-dichlorovinyl dimethyl phosphate, (CH(3)O)(2)P(O)OCH═CCl(2)] is a relatively volatile in-use insecticide. Rate constants for its reaction with OH radicals have been measured over the temperature range 296-348 K and atmospheric pressure of air using a relative rate method. The rate expression obtained was 3.53 × 10(-13) e((1367±239)/T) cm(3) molecule(-1) s(-1), with a 298 K rate constant of (3.5 ± 0.7) × 10(-11) cm(3) molecule(-1) s(-1), where the error in the 298 K rate constant is the estimated overall uncertainty. In addition, rate constants for the reactions of NO(3) radicals and O(3) with dichlorvos, of (2.5 ± 0.5) × 10(-13) cm(3) molecule(-1) s(-1) and (1.7 ± 1.0) × 10(-19) cm(3) molecule(-1) s(-1), respectively, were measured at 296 ± 2 K. Products of the OH and NO(3) radical-initiated reactions were investigated using in situ atmospheric pressure ionization mass spectrometry (API-MS) and (OH radical reaction only) in situ Fourier transform infrared (FT-IR) spectroscopy. For the OH radical reaction, the major initial products were CO, phosgene [C(O)Cl(2)] and dimethyl phosphate [(CH(3)O)(2)P(O)OH], with equal (to within ±10%) formation yields of CO and C(O)Cl(2). The API-MS analyses were consistent with formation of (CH(3)O)(2)P(O)OH from both the OH and NO(3) radical-initiated reactions. In the atmosphere, the dominant chemical loss processes for dichlorvos will be daytime reaction with OH radicals and nighttime reaction with NO(3) radicals, with an estimated lifetime of a few hours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp112019s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!