Serotonin (5-HT)(1A) receptors play a critical role in the 5-HTergic mechanism associated with fear memory. Previously we showed that adult rats exposed to early postnatal stress, i.e. footshock (FS) stress experienced during the second week (PND 14-18, 2W-FS), exhibited low levels of fear expression. The present study explored whether aversive stress exposure in the second and/or the third week (PND 21-25, 3W-FS) affects the function of cortical 5-HT(1A) receptors, using in vivo and in vitro experiments. A 5-HT(1A) receptor agonist, 8-OH-DPAT (0.5 mg/kg, i.p.), slightly decreased the evoked potential in the mPFC in Non-FS control and 3W-FS group. In contrast, the evoked potential increased after 8-OH-DPAT in the 2W-FS group. The in vitro experiment using patch-clamp recording showed that application of 8-OH-DPAT (10 microM) elicited membrane hyperpolarization of pyramidal neurons in the mPFC in the Non-FS and 3W-FS groups, whereas no changes in membrane potential were observed in the 2W-FS group. These results suggest that synaptic facilitation induced by 8-OH-DPAT resulted from functional changes in cortical 5-HT(1A) receptors. Thus, aversive stress exposure during the second postnatal period appears to cause persistent changes mediated via 5-HT(1A) receptors, presumably involving signal transduction regulating the development of synaptic connectivity underlying fear circuits.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!