Fungal biofilters have been recently studied as an alternative to the bacterial systems for the elimination of hydrophobic volatile organic compounds (VOC). Fungi foster reduced transport limitation of hydrophobic VOCs due to their hydrophobic surface and extended gas exchange area associated to the hyphal growth. Nevertheless, one of their principal drawbacks is their slow growth, which is critical in the start-up of fungal biofilters. This work compares the use of different carbon sources (glycerol, 1-hexanol, wheat bran, and n-hexane) to reduce the start-up period and sustain high n-hexane elimination capacities (EC) in biofilters inoculated with Fusarium solani. Four parallel experiments were performed with the different media and the EC, the n-hexane partition coefficient, the biomass production and the specific consumption rate were evaluated. Biofilters were operated with a residence time of 1.3 min and an inlet n-hexane load of 325 g m(-3) (reactor) h(-1). The time to attain maximum EC once gaseous n-hexane was fed was reduced in the three experiments with alternate substrates, as compared to the 36 days needed with the control where only n-hexane was added. The shortest adaptation period was 7 days when wheat bran was initially used obtaining a maximum EC of 160 g m(-3) (reactor) h(-1) and a critical load of 55 g m(-3) (reactor) h(-1). The results were also consistent with the pressure drop, the amount of biomass produced and its affinity for the gaseous n-hexane, as represented by its partition coefficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.23003 | DOI Listing |
Water Res
February 2025
Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Water Resources Engineering, Department of Building and Environmental Technology, Lund University, SE-221 00 Lund, Sweden.
Changing natural organic matter quality from anthropogenic activity and stricter requirements for micropollutant removal challenges existing systems for drinking water production. Ozonation of water followed by biofiltration, such as passage through a slow sand filter (SSF), is a partial solution. Biofiltration relies on biofilms (microbial communities within extracellular matrices).
View Article and Find Full Text PDFBioresour Technol
February 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China. Electronic address:
Developing methods for reusing biodegradable plastics, like polylactic acid (PLA) straws, is highly needed. Here, PLAs were applied to substitute traditional commercial ceramic media (CCM) in denitrification biofilters. During long-term operation, replacing CCM with PLA significantly enhanced nitrate removal efficiency from 32.
View Article and Find Full Text PDFMicrob Ecol
November 2024
Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
Recirculating aquaculture and aquaponics are considered sustainable aquaculture models playing important roles in animal-derived protein supply. In these aquaculture systems, microorganisms are crucial for the system stability. The community coalescence by mixing substances and microorganisms from various microhabitats under hydraulic forces is important for shaping the bacterial communities in these small-scale complex systems.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. Electronic address:
Composting of the organic fraction of municipal solid waste (OFMSW) is accompanied by the emission of large volumes of harmful, hazardous and foul-smelling volatile organic compounds (VOCs). To improve the efficiency of terpenes removal, which constitute a significant part of VOCs, pure cultures of microorganisms dominating in its microbiota were isolated from the microbial community of the biofilter, which has been cleaning such emissions for a long time. Seven pure cultures were isolated and then tested for being able to grow on a mineral medium in the presence of terpene vapor as the only source of carbon and energy.
View Article and Find Full Text PDFCurr Opin Biotechnol
December 2024
Delft University of Technology, van der Maasweg 9, 2629Hz Delft, the Netherlands. Electronic address:
Gravity-driven sand filters are the dominant groundwater treatment technology for drinking water production. In the past, physicochemical reactions were often assumed to play the main role in the removal of contaminants, but recent breakthroughs showcase the vital role of microorganisms. In this Current Opinion, we thoroughly assess the current understanding of biology in sand filters and explore the potential benefits of shifting toward designs aimed at promoting biological reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!