Polyoxometalate-stabilized Pt nanoparticles and their electrocatalytic activities.

Phys Chem Chem Phys

Department of Chemistry, Georgetown University, 37th & "O" Streets NW, Washington, DC 20057, USA.

Published: April 2011

The synthesis of long-term stable polyoxometalate (POM)-stabilized Pt nanoparticles (NPs) is described here. By means of controlled bulk electrolysis, the reduced POM anions, SiW(12)O(40)(4-) (or SiW(12)) and H(2)W(12)O(40)(6-) (or H(2)W(12)), respectively, served the dual role of reductant and protecting/stabilizing ligand for the Pt NPs. Transmission electron microscopy (TEM) images confirmed the formation of 3 to 4 nm sized Pt NPs, which coincidently was in the same size range of the commercial Pt black that was used as a reference. Elemental XPS analyses showed W/Pt ratios of 0.12 for the SiW(12)- and 0.18 for the H(2)W(12)-stabilized Pt NPs, but found no evidence of the presence of Cl(-) anion in the samples. Controlled electrochemical (EC), UV-Vis, and IR data provided unambiguous evidence for the structural integrity of the POM anions on the Pt NP surface. CO stripping, methanol oxidation reaction (MOR), and oxygen reduction reaction (ORR) were used to assess their electrocatalytic activities. It was found that both SiW(12)- and H(2)W(12)-stabilized Pt NPs showed enhanced activities in MOR and ORR as compared to that of Pt black, with the latter having higher enhancement. These observations clearly demonstrated that the stabilizing POM anions have a profound influence on the electrocatalytic activity of the underlying Pt NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cp02805cDOI Listing

Publication Analysis

Top Keywords

pom anions
12
electrocatalytic activities
8
h2w12-stabilized nps
8
nps
6
polyoxometalate-stabilized nanoparticles
4
nanoparticles electrocatalytic
4
activities synthesis
4
synthesis long-term
4
long-term stable
4
stable polyoxometalate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!