Parkinson's disease (PD) has been associated with the development of impulse control disorders (ICDs), possibly due to overstimulation of the mesolimbic system by dopaminergic medication. Preliminary reports have suggested that deep brain stimulation (DBS), a neurosurgical procedure offered to patients with treatment-resistant PD, affects ICD in a twofold way. Firstly, DBS allows a decrease in dopaminergic medication and hence causes an improvement in ICDs. Secondly, some studies have proposed that specific ICDs may develop after DBS. This paper addresses the effects of DBS on ICDs in patients with PD. A literature search identified four original studies examining a total of 182 patients for ICDs and nine case reports of 39 patients that underwent DBS and developed ICDs at some point. Data analysis from the original studies did not identify a significant difference in ICDs between patients receiving dopaminergic medication and patients on DBS, whilst the case reports showed that 56% of patients undergoing DBS had poor outcome with regards to ICDs. We discuss these ambivalent findings in the light of proposed pathogenetic mechanisms. Longitudinal, prospective studies with larger number of patients are required in order to fully understand the role of DBS on ICDs in patients with PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043299 | PMC |
http://dx.doi.org/10.4061/2011/658415 | DOI Listing |
Addict Biol
January 2025
Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFCureus
December 2024
College of Medicine, Almaarefa University, Riyadh, SAU.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms that profoundly impact patients' quality of life. While pharmacological therapies such as levodopa remain the mainstay of treatment, their long-term use is often limited by motor complications. Device-based interventions, including deep brain stimulation (DBS) and continuous dopaminergic infusions, have emerged as alternatives, promising sustained symptomatic control and reduced medication-related side effects.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, The First Hospital of Jilin University, Changchun, China.
Blepharospasm (BSP) is a common focal movement disorder linked to the basal ganglia and plasma catecholamines (CAs). This study aimed to analyze clinical characteristics of BSP patients and explore the relationship with plasma CAs. Clinical characteristics, clinician-rated scales, and plasma CAs were recorded, including dopamine (DA), 3-methoxytyramine (3-MT), and the 3-MT/DA ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!