The disposition of loratadine, a new orally active histamine H1 receptor antagonist and its primary metabolite descarboethoxyloratadine were characterized in adult volunteers with normal renal function (group I), patients with chronic renal failure, i.e., creatinine clearance less than 30 mL/min (group II), as well as chronic hemodialysis patients (group III). The effect of hemodialysis on the disposition of loratadine and descarboethoxyloratadine was also assessed. Subjects in groups I and II were given a single oral 40 mg dose of loratadine while the patients in Group III received two single 40 mg doses of loratadine (during an interdialytic period and just prior to hemodialysis). Loratadine was rapidly absorbed and the decline of plasma concentrations after attainment of the Cmax was biexponential in all subjects. No significant differences in t1/2 beta were observed between the three groups (8.7 +/- 5.9, 7.6 +/- 6.9, 8.6 +/- 1.6 hrs: in groups I, II, and III, respectively). The apparent total body clearance and apparent volume of distribution of loratadine also did not differ significantly among the three groups. No significant differences in the Cmax or tmax of the metabolite were observed. The metabolite AUC infinity 0 however was significantly greater in group II subjects: (212.4 +/- 37.8, 469.5 +/- 95.4, 325.2 +/- 114.6 ng.hr/mL; groups I, II, and III, respectively). No significant relationship was observed between the terminal elimination half-life of loratadine or descarboethoxyloratadine and creatinine clearance. Hemodialysis augmented endogenous clearance by less than 1%. The disposition of loratadine is not significantly altered in patients with severe renal insufficiency nor is hemodialysis an effective means of removing loratadine or descarboethoxyloratadine from the body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/j.1552-4604.1990.tb03607.x | DOI Listing |
Mol Pharm
December 2021
Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
Type III lipid-based formulations (LBFs) combine poorly water-soluble drugs with oils, surfactants, and cosolvents to deliver the drugs into the systemic circulation. However, the solubility of the drug can be influenced by the colloidal phases formed in the gastrointestinal tract as the formulation is dispersed and makes contact with bile and other materials present within the GI tract. Thus, an understanding of the phase behavior of LBFs in the gut is critical for designing efficient LBFs.
View Article and Find Full Text PDFDrug Metab Dispos
April 2021
Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts.
The mechanistic understanding of bile salt disposition is not well established in suspension human hepatocytes (SHH) because of the limited information on the expression and function of bile salt export protein (BSEP) in this system. We investigated the transport function of BSEP in SHH using a method involving in situ biosynthesis of bile salts from their precursor bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Our data indicated that glycine- and taurine-conjugated CA and CDCA were generated efficiently and transported out of hepatocytes in a concentration- and time-dependent manner.
View Article and Find Full Text PDFJ Mol Recognit
June 2015
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Department of Pharmacology and Toxicology, Leopold-Franzen-Universität Innsbruck, Innsbruck, 6020, Austria.
Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes.
View Article and Find Full Text PDFJ Appl Toxicol
June 2013
Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
The multidrug-resistance-associated proteins 1 and 2 (MRP1/MRP2) are transporters responsible for the efflux of drugs and endogenous compounds. Madin Darby canine kidney (MDCK) cells transfected with the human MRP1 or MRP2 genes were used to assess whether several widely used pharmaceuticals are potential substrates by examining their differential toxicity, accumulation and efflux. Loratadine, an antihistamine, was 1.
View Article and Find Full Text PDFAnal Chem
July 2009
Drug Disposition, Pharmaceutical Sciences and Drug Metabolism, Schering Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, USA.
Detection and identification (ID) of all drug metabolites following liquid chromatography (LC)/mass spectrometry (MS) analysis of complex biological matrixes are not trivial. To facilitate detection of drug-derived materials that possess highly diagnostic isotopic patterns (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!