Dark soliton formation in mode-locked lasers is investigated by means of a power-energy saturation model that incorporates gain and filtering saturated with energy, and loss saturated with power. It is found that general initial conditions evolve (mode-lock) into dark solitons under appropriate requirements also met in experimental observations. The resulting pulses are essentially dark solitons of the unperturbed nonlinear Schrödinger equation. Notably, the same framework also describes bright pulses in anomalous and normally dispersive lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.000793 | DOI Listing |
Sci Rep
January 2025
Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, 71491, Tabuk, Saudi Arabia.
In this study, the -model expansion method is showed to be useful for finding solitary wave solutions to the Klein-Gordon (KG) equation. We develop a variety of solutions, including Jacobi elliptic functions, hyperbolic forms, and trigonometric forms, so greatly enhancing the range of exact solutions attainable. The 2D, 3D, and contour plots clearly show different types of solitary waves, like bright, dark, singular, and periodic solitons.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Pabna University of Science and Technology, Pabna, 6600, Bangladesh.
This research used a modified and extended auxiliary mapping method to examine the optical soliton solutions of the truncated time M-fractional paraxial wave equation. We employed the truncated time M-fractional derivative to eliminate the fractional order in the governing model. The few optical wave examples of the paraxial wave condition can assume an insignificant part in depicting the elements of optical soliton arrangements in optics and photonics for the investigation of different actual cycles, including the engendering of light through optical frameworks like focal points, mirrors, and fiber optics.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
SUPA and Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow, Scotland G4 0NG, UK.
Driven optical cavities containing a nonlinear medium support stable dissipative solitons, cavity solitons, in the form of bright or dark spots of light on a uniformly-lit background. Broadening effects due to diffraction or group velocity dispersion are balanced by the nonlinear interaction with the medium while cavity losses balance the input energy. The history, properties, physical interpretation and wide application of cavity solitons are reviewed.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia.
In light of the ponderomotive force, this article focuses on establishing the exact wave structures of the ion sound system. It is the result of non-linear force and affects a charged particle oscillating in an inhomogeneous electromagnetic field. By using the Riemann-Liouville operator, -operator, and Atangana-Baleanu fractional analysis, the examined equation-which consists of the normalized electric field of the Langmuir oscillation and normalized density perturbation-is thoroughly examined.
View Article and Find Full Text PDFHeliyon
November 2024
Laboratory of Research on Advanced Materials and Nonlinear Sciences, Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
In the present work, we focus on the longitudinal model of microtubules (MTs) proposed by Satarić et al. (1993) [12], and that considers MT cells to have ferroelectric properties (behaviors) due to dipolar oscillations of dimers within MTs, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!