A simple application of the Einstein model combined with an elastic description of the solid state is developed. The frequency of quantum oscillators has been assumed as volume dependent and elastic energy terms with a static character have been included to complete the description. Such an extension enables us to construct the complete thermodynamics. In particular, the model yields a practical equation of state and describes the thermal expansion coefficient as well as the isothermal compressibility of solids. The thermodynamic properties resulting from the Gibbs free-energy analysis have been calculated and are illustrated in figures. Some comparisons of the theoretical results with experimental data for solid argon have been made.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/42/425401 | DOI Listing |
Molecules
January 2025
LSMTM, Laboratoire de Synthèse Macromoléculaire et Thio-organique Macromoléculaire, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, Algiers 16111, Algeria.
Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
Dissolution of a poorly soluble active pharmacological substance in a drug carrier usually requires advanced techniques and production equipment. The use of novel carriers such as microemulsions, vesicles, or nanocarriers might entail various limitations concerning production cost, formulation stability, or active substance capacity. In this paper, we present a novel fumed silica-based organogel as a low-cost, simple preparation drug or cosmetic carrier with interesting rheological properties and high solubilization capacity.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Physics, MIT, Cambridge, MA 02139, USA.
Maximizing the amount of work harvested from an environment is important for a wide variety of biological and technological processes, from energy-harvesting processes such as photosynthesis to energy storage systems such as fuels and batteries. Here, we consider the maximization of free energy-and by extension, the maximum extractable work-that can be gained by a classical or quantum system that undergoes driving by its environment. We consider how the free energy gain depends on the initial state of the system while also accounting for the cost of preparing the system.
View Article and Find Full Text PDFAstrobiology
January 2025
Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.
Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.
View Article and Find Full Text PDFCommun Biol
January 2025
Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!