Ferromagnetic ordering at room temperature (RTFM) in MgO thin films deposited by RF magnetron sputtering under various atmospheric conditions and temperatures is reported. A saturation magnetization (M(S)) value as high as 1.58 emu g(-1) is (0.046 μB/unit cell) observed for a 170 nm film deposited at RT under an oxygen pressure of 1.3 × 10(-4) mbar. In contrast, films deposited at elevated temperature (under an identical oxygen pressure), or at higher oxygen pressures, as well as under a nitrogen atmosphere at RT show significantly suppressed magnetization. The ferromagnetic order in the MgO matrix is believed to be defect induced.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/34/345004DOI Listing

Publication Analysis

Top Keywords

room temperature
8
mgo thin
8
thin films
8
films deposited
8
oxygen pressure
8
experimental evidence
4
evidence ferromagnetism
4
ferromagnetism room
4
temperature mgo
4
films ferromagnetic
4

Similar Publications

CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination.

View Article and Find Full Text PDF

Salt-in-presalt electrolyte solutions for high-potential non-aqueous sodium metal batteries.

Nat Nanotechnol

January 2025

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.

Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy.

View Article and Find Full Text PDF

Studies presenting visible-light-induced desulfurization of peptides containing a cysteine residue have been carried out. This transformation driven by light-emitting-diode-type light proceeds with high efficiency in an aqueous solution at room temperature and involves the use of a catalytic amount of photosensitizer, Rose Bengal. The procedure has been tested on model synthetic peptides, lysozyme C and α-crystallin, and successfully applied to a one-pot native chemical ligation (NCL)-desulfurization protocol.

View Article and Find Full Text PDF

Potent HIV‑1 protease inhibitors containing oxabicyclo octanol-derived P2-ligands: Design, synthesis, and X‑ray structural studies of inhibitor-HIV-1 protease complexes.

Bioorg Med Chem Lett

January 2025

Department of Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan; Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

We describe here the design, synthesis, and X-ray structural studies of a new class of HIV-1 protease inhibitors containing 8-oxabicyclo[3.2.1]octanol-derived P2 ligands.

View Article and Find Full Text PDF

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!