Atomistic simulation of track formation by energetic recoils in zircon.

J Phys Condens Matter

Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil.

Published: October 2010

We have performed classical molecular dynamics simulations of fission track formation in zircon. We simulated the passage of a swift heavy ion through crystalline zircon using cylindrical thermal spikes with energy deposition (dE/dx) of 2.5-12.8 keV nm( - 1) and a radius of 3 nm. At a low dE/dx of 2.55 keV nm( - 1), the structural damage recovered almost completely and a damage track was not produced. At higher values of dE/dx, tracks were observed and the radius of the track increased with increasing dE/dx. Our structural analysis shows amorphization in the core of the track and phase separation into Si-rich regions near the center of the track and Zr-rich regions near the periphery. These simulations establish a threshold dE/dx for fission track formation in zircon that is relevant to thermochronology and nuclear waste immobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/39/395008DOI Listing

Publication Analysis

Top Keywords

track formation
12
fission track
8
formation zircon
8
track
7
de/dx
5
atomistic simulation
4
simulation track
4
formation energetic
4
energetic recoils
4
zircon
4

Similar Publications

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Background: Rising antimicrobial resistance (AMR) is an acute public health emergency impeding the clinical efficacy of surgical interventions. Biliary stent placement is one of the routine surgical procedures that rarely lead to infections that are empirically managed by broad-spectrum β-lactams and fluoroquinolones. Critical priority pathogens, such as carbapenem-resistant Escherichia coli challenge treatment outcomes and infection prevention.

View Article and Find Full Text PDF

In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.

View Article and Find Full Text PDF

Liver ischaemia-reperfusion (IR) injury remains a major cause of morbidity and mortality following liver transplantation and resection. CD4+ T cells have been shown to play a key role in murine models; however, there is currently a lack of data that support their role in human patients. Data on clinical outcomes and complications were documented prospectively in 28 patients undergoing first elective liver transplant surgery.

View Article and Find Full Text PDF

Background: Human milk electrolytes are known biomarkers of stages of lactation in the first weeks after birth. However, methods for measuring milk electrolytes are available only in laboratory or expert settings. A small handheld milk sensing device (Mylee) capable of determining on-site individual secretory activation progress from sensing the conductivity of a tiny milk specimen was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!