Despite the economic importance of grasses as food, feed, and energy crops, little is known about the genes that control their cell wall synthesis, assembly, and remodelling. Here a detailed transcriptome analysis that allowed the identification of genes involved in grass cell wall biogenesis is provided. Differential gene expression profiling, using maize oligonucleotide arrays, was used to identify genes differentially expressed between an elongating internode, containing cells exhibiting primary cell wall synthesis, and an internode that had just ceased elongation and in which many cells were depositing secondary cell wall material. This is one of only a few studies specifically aimed at the identification of cell wall-related genes in grasses. Analysis identified new candidate genes for a role in primary and secondary cell wall biogenesis in grasses. The results suggest that many proteins involved in cell wall processes during normal development are also recruited during defence-related cell wall remodelling events. This work provides a platform for studies in which candidate genes will be functionally tested for involvement in cell wall-related processes, increasing our knowledge of cell wall biogenesis and its regulation in grasses. Since several grasses are currently being developed as lignocellulosic feedstocks for biofuel production, this improved understanding of grass cell wall biogenesis is timely, as it will facilitate the manipulation of traits favourable for sustainable food and biofuel production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130177PMC
http://dx.doi.org/10.1093/jxb/err045DOI Listing

Publication Analysis

Top Keywords

cell wall
40
wall biogenesis
20
cell
12
wall
10
identification genes
8
genes involved
8
involved cell
8
biogenesis grasses
8
differential gene
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!