Measuring isotope fractionation by autotrophic microorganisms and enzymes.

Methods Enzymol

Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.

Published: June 2011

Physical, chemical, and biological processes commonly discriminate among stable isotopes. Therefore, the stable isotope compositions of biomass, growth substrates, and products often carry the isotopic fingerprints of the processes that shape them. Therefore, measuring isotope fractionation by enzymes and cultures of autotrophic microorganisms can provide insights at many levels, from metabolism to ecosystem function. Discussed here are considerations relevant to measuring isotope discrimination by enzymes as well as intact cells, with an emphasis on stable one-carbon isotopes and autotrophic microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-385112-3.00014-7DOI Listing

Publication Analysis

Top Keywords

measuring isotope
12
autotrophic microorganisms
12
isotope fractionation
8
fractionation autotrophic
4
microorganisms enzymes
4
enzymes physical
4
physical chemical
4
chemical biological
4
biological processes
4
processes commonly
4

Similar Publications

Proton- and deuteron-induced cross sections on natural platinum.

Appl Radiat Isot

December 2024

Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory, United States.

Light-ion irradiations on natural platinum were performed to measure gold-radioisotope cross sections and isotope ratios, as well as to produce a carrier-free final product. Experimental cross sections are compared to TENDL-2023. There is good agreement with this work's results and other published literature values.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.

View Article and Find Full Text PDF

This study assessed the geogenic radon potential using PECAME, an innovative tool designed to simultaneously measure soil-gas permeability and CO concentration - two key parameters for understanding radon transport in soil. Comparative field studies using the RADON-JOK device in various geological settings in Japan and Poland demonstrate the effectiveness of PECAME. These studies reveal a strong correlation between PECAME and RADON-JOK, with an R value of 0.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!