Recent studies in mammals have revealed the heterogeneity of spermatogonial populations which contain differentiated and undifferentiated cells that further divide into actual stem cells and potential stem cells. In fish however, there are no functional definitions, and very few molecular markers, for germ cells. In our present study, specific antibodies were raised against Sycp3, Plzf and Cyclin B3 in zebrafish and then used to determine the localization of these proteins in the testis. We wished to confirm whether these molecules were potential markers for spermatocytes and spermatogonia. Immunohistochemical observations revealed that Sycp3 is specifically localized in spermatocytes in typical nuclear patterns at each meiotic stage. Plzf was found to be localized in the nucleus of both type A and type B spermatogonia until the 8-cell clone, similar to the pattern in Plzf-positive A(single)-A(aligned) undifferentiated spermatogonia in rodents. In addition to Plzf, the localization of Cyclin B3 was predominantly detected in the nuclei of type A and early type B spermatogonia until the 16-cell clone. Additionally, Cyclin B3 protein signals were detected in germ cells in large cysts, possibly corresponding to spermatocytes at the preleptotene stage. Our present data thus show that these molecules have properties that will enable their use as markers of spermatocytes and early spermatogonia in zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gep.2011.03.002DOI Listing

Publication Analysis

Top Keywords

sycp3 plzf
8
plzf cyclin
8
stem cells
8
germ cells
8
markers spermatocytes
8
type spermatogonia
8
spermatogonia
6
cells
5
evaluation sycp3
4
plzf
4

Similar Publications

In vitro sperm generation from immature mouse testicular tissue using plasma rich in growth factors.

Stem Cell Res Ther

January 2025

Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Background: Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR.

Methods: Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring.

View Article and Find Full Text PDF

Organoids play pivotal roles in uncovering the molecular mechanisms underlying organogenesis, intercellular communication, and high-throughput drug screening. Testicular organoids are essential for exploring the genetic and epigenetic regulation of spermatogenesis in vivo and the treatment of male infertility. However, the formation of testicular organoids with full spermatogenesis has not yet been achieved.

View Article and Find Full Text PDF

This study explores the effects of Trib3 gene knockout on adult male rat spermatogenesis. Using CRISPR/Cas9, we knocked out the Trib3 gene in Wistar rats. Results indicate altered expression of PLZF, ID4, and c-KIT in knockout rats, suggesting impaired spermatogonial stem cell proliferation and differentiation.

View Article and Find Full Text PDF

The demand for goat milk products has increased exponentially with the growth of the global population. The shortage of dairy products will be addressed extraordinarily by manipulating the female rate of goat offspring to expand the goat population and goat milk yield. No studies have reported bioinformatic analyses of X- and Y-bearing sperm of dairy goats, although this will contribute to exploring novel and applied sex-skewing technologies.

View Article and Find Full Text PDF

Establishment of a Spermatogonial Stem Cell Line with Potential of Meiosis in a Hermaphroditic Fish, .

Cells

September 2022

State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.

Spermatogonial stem cells (SSCs) are unique adult stem cells capable of self-renewal and differentiation into sperm. Grouper is a protogynous hermaphroditic fish farmed widely in the tropical and subtropical seas. In this study, we established an SSC line derived from adult testis of orange-spotted grouper, .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!